
Chapter 4

Analysis of Effect of Oblateness of

Smaller Primary on the Evolution

of Periodic Orbits

In chapters 2 and 3 we have considered Sun–Saturn system in which actual oblateness

of Saturn is taken into account. We have analyzed the effect of solar radiation

pressure on Sun centered periodic orbits and Saturn centered periodic orbits in

chapter 2, whereas in chapter 3 we have done the stability analysis for f family

periodic orbits under the perturbation of solar radiation pressure.

In this chapter we have analyzed family of periodic orbits around both primaries

for two systems – Sun–Mars and Sun–Earth systems – using Poincaré surface of

section (PSS) technique. During this study effects of oblateness of smaller primary

on these orbits are analyzed. It is observed that oblateness of smaller primary has

substantial effect on period, shape, size and position of orbits in the phase space.

Since these orbits can be used for the design of low energy transfer trajectories,

perturbations due to planetary oblateness has to be understood and should be taken

into consideration during trajectory design. Periodic orbits, with three–loops for A2

= 0.0001, have been analyzed in detail for its stability.
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4.1 Introduction

A low–energy transfer trajectory [Koon et. al.(2001)] is a trajectory in space that

allows spacecraft to change the existing orbits using very small amount of fuel in

comparison with Hohmann transfer orbit. To construct low–energy transfer trajec-

tories, we require periodic orbits of spacecrafts around both primary bodies. Space

agencies are trying to place telescopes into deep space like NASA’s Terrestrial Planet

Finder and ESA’s Darwin project, to find Earth–like planets around other stars ex-

hibiting life. In order to perform space mission to explore different aspects of far

away objects, it is required to determine special types of orbits that cannot be found

by classical approaches.

However, it is to be noted that the classical approaches to spacecraft design are like

Hohmann transfer for Apollo Moon landings and swing bys of outer planets for voy-

ager. But these missions were costly in terms of fuel. A very high fuel requirement

for space missions may cause it infeasible. A new class of low energy trajectories

has been introduced recently in which low fuel burn is required to transfer the tra-

jectory from initial position to the targeted final position. A proper understanding

of low–energy trajectory can be seen in [Koon et. al.(2011)].

Study of orbits of bodies in RTBP has been described in detail by [Szebehely (1967)].

Because of the non–linear nature of the equations of motion involved in the study of

the system, analytical methods may not give illuminating insights into the solution.

So, PSS is widely used for finding the orbits of the infinitesimal particle (spacecraft)

and analyzing periodic, quasi periodic and chaotic orbits. Solar system dynamics

by [Murray and Dermot (1999)] provide a detailed analysis of periodic orbits using

PSS technique.

As per Kolmogorov–Arnold–Moser (KAM) theory (Moser, 1966), a fixed point on the

Poincare surface of section represents a periodic orbit in the rotating frame, and the

closed curves around the point correspond to the quasi–periodic orbits. [Dutt and

Sharma (2010)] have analyzed the PSS for Earth–Moon system without considering

any perturbation. [Dutt and Sharma (2011a)] also have analysed Sun–Mars system

by incorporating perturbations due to solar radiation. They have identified periodic,

quasi–periodic solutions and chaotic regions from the PSS. Similar studies have been

made by [Safiya Beevi and Sharma (2011)] for Saturn–Titan system. They have
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studied perturbation due to oblateness of Saturn in the Saturn–Titan system. [Dutt

and Sharma(2012)] have analyzed the f family orbits around smaller primary under

RTBP for 14 systems under ideal conditions.

Recently, [Pathak et. al. (2016a)] have done analysis of Sun and Saturn centered

periodic orbits with solar radiation pressure and oblateness and found that there is a

substantial effect of solar radiation pressure on position and geometry of secondary

body’s orbit. [Pathak and Thomas(2016b)] have studied f family periodic orbits

and their stability for Sun–Saturn system with perturbation. In their study Sun

was taken as a source of radiation and Saturn was considered as an oblate spheroid.

By taking the actual coefficient of oblateness for Saturn and different values of solar

radiation pressure, the f family orbits have been analyzed in detail.

Periodic orbits of spacecraft around two primaries are used to construct low energy

trajectory. [Stromgren (1935)] has established three classes with orbits around both

primaries depending on motion of spacecraft is prograde or retrograde in the rotating

system as well as in fixed system. In this chapter we have analyzed periodic orbits

around both primaries with retrograde motion in rotating system and analyzed

periodic orbits having number of loops from 1 to 5 for different pairs of oblateness

coefficient A2 and Jacobi constant C for Sun–Mars and Sun–Earth system. It has

been found that A2 and C has substantial effect on the position, shape and size of

the orbits and hence must be considered during low energy trajectory design.

4.2 Results and discussion

We shall consider two systems, the Sun–Mars system and the Sun–Earth system.

The mass of Sun, Earth and Mars considered in the study are 1.9881 × 1030 kg,

5.972 × 1024 kg and 6.4185 × 1023 kg, respectively, [Dutt and Sharma (2010)].

Thus, for the Sun–Earth and Sun–Mars systems, mass factor µ are 0.000003002

and 0.0000003212 respectively. Equatorial and polar radii of Earth are 6378.1 km.

and 6356.8 km. and that of Mars are 3396.2 km. and 3376.2 km., respectively. The

distance between Sun and Earth is taken as 149,600,000 km. and distance between

Sun and Mars is 227,940,000 km. So, oblateness coefficients calculated from Equa-

tion (1.4.19) for Sun–Earth and Sun–Mars systems have values A2 = 2.42405×10−12
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and A2 = 5.21389× 10−13 respectively. Equations (1.4.12) to (1.4.16) are equations

of motion of secondary body under the Sun–Mars and Sun–Earth systems. Through-

out this chapter value of q is taken as 1. In other words, effect of solar radiation

pressure is not taken into account. But A2 is taken as variable to study the effect

of oblateness on this family of orbits.

In order to study the effect of oblateness on periodic orbit around both primaries,

we take different values of oblateness that can make observable changes in different

parameters. For a given A2, selection of C is not arbitrary. Using equation (1.4.21)

we can obtain maximum value of C as explained in chapter 3. Value of C in the

range, thus, determined is the admissible value of C.

Table 4.1 and Table 4.2 show range of admissible values of C for Sun–Mars and Sun–

Earth systems. It can be observed that for both the systems as oblateness increases,

admissible range of C increases. But this increment is larger for Sun–Earth system

than Sun–Mars system. So, we can say that as mass factor µ increases, effect of

oblateness increases and due to that admissible range of C increases.

For simplicity in writing the head rows of Table 4.1 and 4.2, oblateness, maximum

value of C, value of C greater than maximum value of C, lower limit of excluded

region, upper limit of excluded region and size of the excluded region are denoted

by A2, CM , C, LER, UER and SER respectively.

We have studied the effect of oblateness on the location and period of Sun–Mars

system for different values of Jacobi constant C using PSS. Figure 4.1 shows PSS

constructed for Sun–Mars system when (A2 , C) is (0.0005, 2.93) by taking value

of x from the interval [0.8, 1] with interval of x difference as 0.001. Also, time span

t = 10, 000 time units and interval of time difference is taken as 0.001. So, for each x

equations of motion are integrated using Runge–Kutta–Gill method. Each solution

is plotted as a point in Figure 4.1. The arcs of PSS are known as islands whose

center gives periodic orbit.

In a similar way, we can obtain PSS for Sun–Earth which is shown in Figure 4.2.

This PSS is also constructed for the pair (A2, C) given by (0.0005, 2.93). Our aim

is to make a comparative study of the effect of oblateness on different parameters of

the orbits of Sun–Earth and Sun–Mars systems using PSS technique. Mass factor
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µ of Sun–Earth is greater than µ of Sun–Mars.

Table 4.1: Admissible range of C for Sun–Mars system.

A2 CM C LER UER SER

0.00001 3.000 3.001 0.984 0.999 0.016

0.00005 3.000 3.001 0.984 0.998 0.015

0.00010 3.000 3.001 0.985 0.997 0.013

0.00050 3.001 3.002 0.981 0.995 0.015

Table 4.2: Admissible range of C for Sun–Earth system.

A2 CM C LER UER SER

0.00001 3.000 3.001 0.988 0.992 0.005

0.00005 3.001 3.002 0.978 0.995 0.018

0.00010 3.001 3.002 0.979 0.993 0.015

0.00050 3.002 3.003 0.976 0.990 0.015

For Sun–Mars system, the numerical values of location of periodic orbit and left end

(L) and right end (R) of corresponding island for C = 2.93, 2.94, 2.95, 2.96 and for

oblateness A2 = 0.00001, 0.00005, 0.0001 and 0.0005 are displayed in Table 4.3. It

is observed from the table that a change in C in the range (2.93, 2.96) affects the

location of the periodic orbits. Oblateness also affects the location of the periodic

orbit. Similarly, the effects of C and A2 in the location of periodic orbits and left

end (L) and right end (R) of corresponding island for the Sun–Earth system are

studied and the numerical estimates of the changes are displayed in Table 4.4. Size

of the island gives stability of the corresponding orbit.

The periodic orbits starting from single–loop to five–loops in the Sun–Mars and

Sun–Earth systems for A2 = 0.0005 and C = 2.93 are shown in Figures 4.3(a)–

(j). It can be observed, from Figure 4.3, that the width of the orbit decreases

continuously as the number of loops increases. Further, in all cases the secondary
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Figure 4.1: PSS for A2 = 0.0005 and C = 2.93, for x = [0.8, 1] for Sun–Mars
system.
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Figure 4.2: PSS for A2 = 0.0005 and C = 2.93, for x = [0.8, 1] for Sun–Earth
system.
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(a) Single–loop orbit with T = 13

in Sun–Mars system.

−2 0 2

−2

0

2

x

y

(b) Single–loop orbit with T = 13

in Sun–Earth system.
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(c) Two–loops orbit with T = 19

in Sun–Mars system.
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(d) Two–loops orbit with T = 19

in Sun–Earth system.
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(e) Three–loops orbit with T = 26

in Sun–Mars system.
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(f) Three–loops orbit with T = 26

in Sun–Earth system.
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(g) Four–loops orbit with T = 32

in Sun–Mars system.
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(h) Four–loops orbit with T = 32

in Sun–Earth system.
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(i) Five–loops orbit with T = 38 in
Sun–Mars system.
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(j) Five–loops orbit with T = 38 in
Sun–Earth system.

Figure 4.3: Periodic orbits around both primaries for Sun–Mars and Sun–Earth
systems when C = 2.93 and A2 = 0.0005.
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body’s (spacecraft’s) orbits around the second primary (Mars or Earth) in addition

to orbiting both primaries. Further, the secondary body is closest to Mars or Earth

in the single–loop closed orbit. Such orbits may be useful in the study of different

aspects of both primaries.

In many models available in literature not many closed orbits possess this kind of

nature. Further, the position of the orbit in phase space approaches the first primary,

namely the Sun as number of loops increases. It can be observed that the period of

the orbit remains unchanged due to change in oblateness or mass factor, but period

of the orbit increases with increment in number of loops.
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Figure 4.4: Variation in location of single–loop periodic orbit around Sun–Mars
system due to oblateness.

We have studied the variation of position of periodic orbits around Sun–Mars and

Sun–Earth system due to the variation in oblateness and Jacobi constants C. In

Figure 4.4 we have shown the variation of position of closed periodic orbit with

single–loop for oblateness in the range (0.00001, 0.0005) for Sun–Mars system cor-

responding to Jacobi constants C = 2.93, 2.94, 2.95 and 2.96. From Figure 4.4

it is clear that the position of the orbits recedes from Mars, when the oblateness

increases and C decreases. Similar kind of conclusion can be drawn from Figure 4.5

for the Sun–Earth system. We have studied the effect of A2 and C on the position

of the orbits having loops varying from 1 to 5 for both Sun–Mars and Sun–Earth

systems. The results of these observations for 5–loops closed periodic orbit in both

Sun–Mars and Sun–Earth systems are shown in Figure 4.6 and Figure 4.7.

88



0 1 2 3 4 5 6

x 10
−4

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A2

x

 

 
C = 2.93
C = 2.94
C = 2.95
C = 2.96

Figure 4.5: Variation in location of single–loop periodic orbit around Sun–Earth
system due to oblateness.

0 1 2 3 4 5 6

x 10
−4

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

A2

x

 

 
C = 2.93
C = 2.94
C = 2.95
C = 2.96

Figure 4.6: Variation in location of five–loops periodic orbit around Sun–Mars sys-
tem due to oblateness.
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Figure 4.7: Variation in location of five–loops periodic orbit around Sun–Earth sys-
tem due to oblateness.
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Figure 4.8: Variation in location of periodic orbit of secondary body around Sun and
Mars for C = 2.93 due to number of loops for different A2.
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Figure 4.9: Variation in location of periodic orbit of secondary body around Sun–
Earth system for C = 2.93 due to number of loops for different A2.
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Figure 4.10: Stability analysis for three–loops orbit for Sun–Earth system when A2 =
0.0001.
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Figure 4.11: Amplitude for three–loops orbit for Sun–Earth system when A2 =
0.0001.

From Figures 4.8 and 4.9, it can be observed that for given oblateness, location of

periodic orbit moves away from second primary as number of loops in periodic orbit

increase. Also, as oblateness increases, location of periodic orbit moves away from

second primary. We have analyzed stability of periodic orbits from loop 1 to 5 for

A2 = 0.00001, 0.00005, 0.0001 and 0.0005. Since stability behavior is similar for all

these orbits, the analysis is made for three loops orbit corresponding to A2 = 0.0001.

Figure 4.10 shows stability region for A2 = 0.0001 for three loop orbits. The left

and right tips of the island are plotted by red and green curves, respectively. From

Figure 4.10 it is clear that size of stability region is very small in comparison to

f family orbit [Dutt and Sharma(2012), Pathak and Thomas(2016b)]. So, these

periodic orbits can be used as a transfer orbits as they are not stable. So, secondary

body requires fewer amount of fuel than Hohmann transfer.

Figure 4.11 shows amplitude for three–loops orbit when A2 = 0.0001. It can be

observed that there are two separatrices at C = 2.95 and 2.96 where stability of the

periodic orbit is zero as the size of the island is zero. For C = 2.94, we get maximum

stability which is 0.0008. Figure 4.12 shows size of the island for C = 2.94 for three–

loops orbit when A2 = 0.0001 which is 0.0008 whereas Figure 4.13 shows PSS of first

separatrix at C = 2.95 which looks like a straight line whereas for f family orbit

it is triangular due to third order resonance [Dutt and Sharma(2012), Pathak and

Thomas(2016b)]. It can be seen that size of this island is zero. Figure 4.14 shows

three–loops orbit corresponding to first separatrix when A2 = 0.0001. Figure 4.15
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shows for C = 2.955 again size of island increases and it becomes 0.0006, whereas

for C = 2.96 again size of island becomes zero, which is second separatrix as shown

in Figure 4.16. Three–loops orbit corresponding to second separatrix is given in

Figure 4.17.
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Figure 4.12: Enlarge view of PSS for C = 2.94 when A2 = 0.0001.
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Figure 4.13: Enlarge view of PSS of first separatrix for three–loops orbit for C = 2.95
when A2 = 0.0001.

In Table 4.5 initial velocity of secondary body is denoted by V , D1 and D2 are the

distance of secondary body from Mars and Sun respectively. The unit of V is in

kms−1 , that for D1 and D2 is in km. Similar notations are used in Table 4.6 also.

In Table 4.6 distance of secondary body from Earth is denoted by D1. V can be

obtained using Equation (1.5.48). The conversion from units of distance (I) and
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Figure 4.14: Orbit at first separatrix corresponding to C = 2.95, A2 = 0.0001 and
x = 0.894.
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Figure 4.15: Enlarge view of PSS for C = 2.955 when A2 = 0.0001.
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Figure 4.16: Enlarge view of PSS of second separatrix for three–loops orbit for C =
2.96, A2 = 0.0001.
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Figure 4.17: Orbit at second separatrix corresponding to C = 2.96, A2 = 0.0001,
and x = 0.915.
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velocity (J) in the normalized dimensionless system to the dimensionalized system

is given by,

D = R× I, (4.2.1)

V = O × J, (4.2.2)

where R is the distance between the centers of both primaries in km. O is the orbital

velocity of second primary around first primary [Koon et. al.(2011)]. For Sun–Mars

and Sun–Earth system R = 227, 940, 000 and 149,600,000 km. respectively. Mean

orbital velocity of Mars around Sun and Earth around Sun are 24.07 kms−1 and

29.78 kms−1 respectively.

It can be observed from Tables 4.5 and 4.6 that for given oblateness and given

number of loops, as C decreases, V and D1 increase while D2 decreases. For a given

C and given number of loops, as A2 increases initial velocity and D1 increase and

D2 decreases. So, the effect of C and oblateness A2 is opposite in nature. For given

value of A2 and C, as number of loops increases, D1 increases and D2 decreases

whereas V decreases up to orbits with loops 1–3 and then increases from orbits with

loops 3–5.

From Table 4.5, it is observed that single–loop orbit for A2 = 0.00001 is closest

to Mars and the corresponding distance is 3.886 × 107 km. for C = 2.96. Similar

notations are used in Table 4.6 also. From Table 4.6, it is observed that single–loop

orbit for A2 = 0.00001 is closest to Earth and this distance is 2.542 × 107 km. for

C = 2.96. Here D1 is the distance of secondary body from Earth.

4.3 Prediction of orbit through regression analy-

sis

The locations of single–loop and two–loops periodic orbits obtained for different

values of C and for A2 = 0.00001 for Sun–Mars system is displayed in Table 4.7.

Using regression analysis we have displayed the predicted position of the orbit for

different values of C. The predicted and exact values of positions together with

error estimates are displayed in Table 4.8. The best fit curve for single–loop is a
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straight line with equation

x = 1.466C − 3.357

and the coefficient of determination R2 = 0.999, whereas, for two–loops periodic

orbit regression line is

x = 1.804C − 4.4

and R2 = 0.999.

Similar calculations are made for single–loop and two–loops orbits for A2 = 0.0005

and the relevant estimates are displayed in Tables 4.9 and 4.10. The regression curve

for single–loop periodic orbit is given by

x = 1.9C2 − 9.728C + 13.13

with R2 = 1 and for two–loops periodic orbit regression curve is

x = 4.475C2 − 24.56C + 34.43

with R2 = 1. It can be observed that as C increases the error between the predicted

and exact values of the position of periodic orbits increases. The PSS together with

regression analysis will help one to locate the position of the periodic orbit with less

effort, using the predicted positions from the analysis.

The variation of position x with respect to oblateness A2 for Sun–Mars system for

fixed value of C = 2.96 using PSS is shown in Table 4.11. The predicted and exact

values of the position of orbits together with error estimates using regression analysis

are shown in Table 4.12. For single–loop orbit the best fit regression curve is

x = −500.7A2
2 − 2.5A2 + 0.983

with R2 = 1, whereas, for two–loops orbit

x = −39.14A2
2 − 3.329A2 + 0.941

with R2 = 1.

The variation of position x for different values of C for single–loop and two–loops
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orbit for A2 = 0.00001 for Sun–Earth system is shown in Table 4.13. Using regression

analysis we have displayed predicted and exact values of position together with error

estimates are shown in Table 4.13. As in the case of Sun–Mars system the error

estimate decreases with increase in C for both single–loop and two–loops orbits.

The best fit curve for single–loop orbit is given by

x = 1.466C − 3.358

with R2 = 0.999, and for two–loops orbit regression line

x = 1.805C − 4.402

with R2 = 0.999.

Similar estimates are displayed for A2 = 0.00005 in Table 4.15 and Table 4.16, for

Sun–Earth system. For single–loop orbit regression curve is given by

x = 2.125C2 − 11.05C + 15.07

with R2 = 1 and for two–loops orbit regression curve is given by

x = 4.475C2 − 24.55C + 34.41

with R2 = 1.

The variation of position x with oblateness A2 for Sun–Earth system is shown in

Table 4.17 for a fixed value of C = 2.96. The predicted and exact value of position

together with error estimates are shown in Table 4.18.

The equation of the best fit curve for single–loop is

x = −1056A2
2 − 2.105A2 + 0.983

with R2 = 1, whereas for two–loops orbit regression curve is

x = −58.59A2
2 − 3.325A2 + 0.941

with R2 = 1.
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Table 4.3: Analysis of periodic orbit for different pairs of A2 and C for Sun–Mars system.

NL C A2 = 0.00001 A2 = 0.00005 A2 = 0.00010 A2 = 0.00050
x L R x L R x L R x L R

1

2.96 0.98295 0.9829 0.9830 0.98285 0.9827 0.9830 0.98272 0.9825 0.9829 0.9816 0.9815 0.9817
2.95 0.96790 0.9678 0.9680 0.96780 0.9676 0.9680 0.96765 0.9669 0.9686 0.9666 0.9660 0.9670
2.94 0.95324 0.9530 0.9535 0.95314 0.9530 0.9533 0.95300 0.9530 0.9530 0.95196 0.9519 0.9520
2.93 0.93896 0.9389 0.9390 0.93887 0.9387 0.9390 0.93875 0.9386 0.9389 0.93772 0.9376 0.9378

2

2.96 0.94149 0.9406 0.9425 0.94136 0.9411 0.9414 0.94119 0.9410 0.9414 0.93985 0.9397 0.9400
2.95 0.92251 0.9224 0.9226 0.92239 0.9223 0.9225 0.92223 0.9220 0.9225 0.92096 0.9209 0.9210
2.94 0.90450 0.9042 0.9050 0.90438 0.9041 0.9050 0.90424 0.9040 0.9045 0.90302 0.9030 0.9030
2.93 0.88734 0.8870 0.8878 0.88722 0.8870 0.8874 0.88708 0.8870 0.8872 0.88592 0.8858 0.8860

3

2.96 0.91529 0.9150 0.9156 0.91514 0.9150 0.9153 0.91496 0.9149 0.9150 0.91348 0.9133 0.9137
2.95 0.89425 0.8940 0.8945 0.89412 0.8940 0.8942 0.89395 0.8939 0.8940 0.89258 0.8922 0.8930
2.94 0.87463 0.8743 0.8748 0.87449 0.8743 0.8747 0.87433 0.8740 0.8747 0.87305 0.8730 0.8731
2.93 0.85616 0.8560 0.8563 0.85604 0.8560 0.8561 0.85588 0.8558 0.8560 0.85467 0.8543 0.8550

4

2.96 0.89703 0.8970 0.8971 0.89688 0.8968 0.8970 0.89668 0.8965 0.8969 0.89515 0.8950 0.8953
2.95 0.8749 0.8748 0.8750 0.87476 0.8745 0.8750 0.87458 0.8740 0.8750 0.87316 0.8730 0.8733
2.94 0.85447 0.8544 0.8545 0.85433 0.8540 0.8547 0.85417 0.8541 0.8543 0.85284 0.8527 0.8530
2.93 0.8354 0.8350 0.8360 0.83528 0.8350 0.8357 0.83512 0.8350 0.8353 0.83388 0.8338 0.8340

5

2.96 0.88363 0.8832 0.8834 0.88347 0.8830 0.8838 0.88328 0.8830 0.8836 0.8817 0.8814 0.8820
2.95 0.8609 0.8608 0.8610 0.86075 0.8605 0.8610 0.86057 0.8602 0.8609 0.85912 0.8590 0.8593
2.94 0.84004 0.8400 0.8401 0.83991 0.8398 0.8400 0.83974 0.8394 0.8401 0.83839 0.8383 0.8385
2.93 0.82068 0.8204 0.8210 0.82056 0.8205 0.8206 0.8204 0.8200 0.8208 0.81914 0.8190 0.8193
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Table 4.4: Analysis of periodic orbit for different pairs of A2 and C for Sun–Earth system.

NL C A2 = 0.00001 A2 = 0.00005 A2 = 0.00010 A2 = 0.00050
x L R x L R x L R x L R

1

2.96 0.98300 0.9830 0.9830 0.98290 0.9828 0.9830 0.98280 0.9828 0.9828 0.98170 0.9817 0.9817
2.95 0.96790 0.9678 0.9680 0.96782 0.9676 0.9680 0.96770 0.9674 0.9680 0.96660 0.9662 0.9670
2.94 0.95325 0.9530 0.9535 0.95315 0.9530 0.9533 0.95304 0.9530 0.9531 0.95200 0.9520 0.9520
2.93 0.93900 0.9390 0.9390 0.93890 0.9388 0.9390 0.93877 0.9385 0.9390 0.93775 0.9375 0.9380

2

2.96 0.94155 0.9410 0.9420 0.94140 0.9410 0.9418 0.94125 0.9410 0.9415 0.93990 0.9398 0.9400
2.95 0.92255 0.9221 0.9230 0.92244 0.9220 0.9230 0.92226 0.9220 0.9225 0.92100 0.9210 0.9210
2.94 0.90455 0.9040 0.9051 0.90442 0.9040 0.9048 0.90426 0.9040 0.9045 0.90305 0.9030 0.9031
2.93 0.88737 0.8870 0.8877 0.88725 0.8870 0.8875 0.88710 0.8870 0.8872 0.88595 0.8859 0.8860

3

2.96 0.91535 0.9150 0.9157 0.91520 0.9150 0.9154 0.91500 0.9150 0.9150 0.91354 0.9131 0.9141
2.95 0.89430 0.8940 0.8946 0.89416 0.8940 0.8943 0.89400 0.8940 0.8940 0.89262 0.8922 0.8930
2.94 0.87465 0.8743 0.87500 0.87453 0.8741 0.8750 0.87438 0.8740 0.8748 0.87309 0.8730 0.8732
2.93 0.85620 0.8554 0.8570 0.85608 0.8560 0.8562 0.85592 0.8558 0.8560 0.85470 0.8544 0.8550

4

2.96 0.89710 0.8970 0.8972 0.89695 0.8969 0.8970 0.89675 0.8965 0.8970 0.89520 0.8950 0.8954
2.95 0.87495 0.8749 0.8750 0.87482 0.8746 0.8750 0.87464 0.8743 0.8750 0.87321 0.8730 0.8734
2.94 0.85450 0.8540 0.8550 0.85438 0.8540 0.8548 0.85421 0.8540 0.8544 0.85289 0.8528 0.8530
2.93 0.83544 0.8350 0.8359 0.83532 0.8350 0.8356 0.83516 0.8350 0.8353 0.83392 0.8338 0.8340

5

2.96 0.88370 0.8834 0.8840 0.88353 0.8830 0.8841 0.88334 0.8830 0.8837 0.88175 0.8815 0.8820
2.95 0.86095 0.8609 0.8610 0.86080 0.8606 0.8610 0.86062 0.8602 0.8610 0.85918 0.8590 0.8594
2.94 0.84010 0.8400 0.8402 0.83995 0.8399 0.8400 0.83978 0.8396 0.8400 0.83844 0.8380 0.8389
2.93 0.82072 0.8204 0.8210 0.82060 0.8200 0.8210 0.82044 0.8200 0.8209 0.81918 0.8190 0.8194
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Table 4.5: Location, velocity and distance of orbit from both primaries for A2 = 0.00001, 0.00005, 0.0001, 0.0005 for Sun–Mars
system.

NL C A2 = 0.00001 A2 = 0.00005 A2 = 0.00010 A2 = 0.00050
x V D1 D2 x V D1 D2 x V D1 D2 x V D1 D2

km

sec
107km 108km

km

sec
107km 108km

km

sec
107km 108km

km

sec
107km 108km

1

2.96 0.98295 28.52 0.3886 2.2405 0.98285 28.53 0.3909 2.2403 0.98272 28.53 0.3938 2.2400 0.98160 28.54 0.4194 2.2374
2.95 0.96790 28.84 0.7316 2.2062 0.96780 28.85 0.7339 2.2060 0.96765 28.85 0.7373 2.2056 0.96660 28.86 0.7613 2.2032
2.94 0.95324 29.16 1.0658 2.1728 0.95314 29.16 1.0681 2.1725 0.95300 29.16 1.0713 2.1722 0.95196 29.18 1.0950 2.1698
2.93 0.93896 29.48 1.3913 2.1402 0.93887 29.48 1.3933 2.1400 0.93875 29.48 1.3961 2.1397 0.93772 29.49 1.4196 2.1374

2

2.96 0.94149 28.08 1.3336 2.1460 0.94136 28.08 1.3366 2.1457 0.94119 28.08 1.3405 2.1453 0.93985 28.11 1.3710 2.1422
2.95 0.92251 28.52 1.7662 2.1027 0.92239 28.53 1.7690 2.1024 0.92223 28.53 1.7726 2.1021 0.92096 28.55 1.8016 2.0992
2.94 0.90450 28.96 2.1768 2.0617 0.90438 28.96 2.1795 2.0614 0.90424 28.96 2.1827 2.0611 0.90302 28.99 2.2105 2.0583
2.93 0.88734 29.38 2.5679 2.0226 0.88722 29.39 2.5706 2.0223 0.88708 29.39 2.5738 2.0220 0.88592 29.41 2.6003 2.0193

3

2.96 0.91529 28.06 1.9308 2.0863 0.91514 28.06 1.9342 2.0859 0.91496 28.07 1.9383 2.0855 0.91348 28.10 1.9721 2.0821
2.95 0.89425 28.59 2.4104 2.0383 0.89412 28.59 2.4134 2.0380 0.89395 28.59 2.4172 2.0376 0.89258 28.62 2.4485 2.0345
2.94 0.87463 29.09 2.8576 1.9936 0.87449 29.09 2.8608 1.9933 0.87433 29.10 2.8645 1.9929 0.87305 29.12 2.8936 1.9900
2.93 0.85616 29.58 3.2786 1.9515 0.85604 29.58 3.2814 1.9512 0.85588 29.58 3.2850 1.9508 0.85467 29.61 3.3137 1.9480

4

2.96 0.89703 28.15 2.3470 2.0446 0.89688 28.15 2.3505 2.0443 0.89668 28.15 2.3550 2.0438 0.89515 21.18 2.3899 2.0404
2.95 0.87490 28.72 2.8515 1.9942 0.87476 28.72 2.8547 1.9939 0.87458 28.73 2.8588 1.9935 0.87316 28.76 2.8911 1.9902
2.94 0.85447 29.27 3.3172 1.9476 0.85433 29.27 3.3203 1.9473 0.85417 29.27 3.3240 1.9469 0.85284 29.30 3.3543 1.9439
2.93 0.83540 29.79 3.7518 1.9042 0.83528 29.79 3.7546 1.9039 0.83512 29.80 3.7582 1.9035 0.83388 29.82 3.7865 1.9007

5

2.96 0.88363 28.25 2.6525 2.0141 0.88347 28.25 2.6561 2.0137 0.88328 28.26 2.6605 2.0133 0.88170 28.29 2.6965 2.0097
2.95 0.86090 28.86 3.1706 1.9623 0.86075 28.86 3.1740 1.9619 0.86057 28.86 3.1781 1.9615 0.85912 28.89 3.2112 1.9582
2.94 0.84004 29.43 3.6461 1.9147 0.83991 29.43 3.6490 1.9144 0.83974 29.43 3.6529 1.9141 0.83839 29.46 3.6837 1.9110
2.93 0.82068 29.98 4.0874 1.8706 0.82056 29.98 4.0901 1.8703 0.82040 29.98 4.0937 1.8700 0.81914 30.01 4.1225 1.8671
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Table 4.6: Location, velocity and distance of orbit from both primaries for A2 = 0.00001, 0.00005, 0.0001, 0.0005 for Sun–
Earth system.

NL C A2 = 0.00001 A2 = 0.00005 A2 = 0.00010 A2 = 0.00050

x V D1 D2 x V D1 D2 x V D1 D2 x V D1 D2

km

sec
107km 108km

km

sec
107km 108km

km

sec
107km 108km

km

sec
107km 108km

1

2.96 0.983 35.32 0.2542 1.4705 0.9829 35.32 0.2557 1.4704 0.9828 35.33 0.2572 1.4702 0.9817 35.36 0.2737 1.4686
2.95 0.9679 35.70 0.4801 1.4479 0.96782 35.70 0.4813 1.4478 0.9677 35.70 0.4831 1.4476 0.9666 35.72 0.4996 1.4460
2.94 0.95325 36.09 0.6993 1.4260 0.95315 36.09 0.7008 1.4259 0.95304 36.09 0.7024 1.4257 0.952 36.11 0.7180 1.4241
2.93 0.939 36.47 0.9125 1.4047 0.9389 36.47 0.9140 1.4045 0.93877 36.48 0.9159 1.4044 0.93775 36.50 0.9312 1.4028

2

2.96 0.94155 34.75 0.8743 1.40856 0.9414 34.75 0.8766 1.4083 0.94125 34.75 0.8788 1.4081 0.9399 34.78 0.8990 1.4060
2.95 0.92255 35.30 1.1586 1.3801 0.92244 35.30 1.1602 1.3799 0.92226 35.30 1.1629 1.3797 0.921 35.33 1.1817 1.3778
2.94 0.90455 35.83 1.4278 1.3532 0.90442 35.84 1.4298 1.3530 0.90426 35.84 1.4322 1.3527 0.90305 35.87 1.4503 1.3509
2.93 0.88737 36.36 1.6848 1.3275 0.88725 36.36 1.6866 1.3273 0.8871 36.36 1.6889 1.3271 0.88595 36.39 1.7061 1.3253

3

2.96 0.91535 34.72 1.2663 1.3693 0.9152 34.73 1.2685 1.3691 0.915 34.73 1.2715 1.3688 0.91354 34.77 1.2933 1.3666
2.95 0.8943 35.37 1.5812 1.3378 0.89416 35.37 1.5833 1.3376 0.894 35.38 1.5857 1.3374 0.89262 35.41 1.6063 1.3353
2.94 0.87465 35.99 1.8751 1.3084 0.87453 36.00 1.8769 1.3083 0.87438 36.00 1.8792 1.3080 0.87309 36.03 1.8985 1.3061
2.93 0.8562 36.60 2.1512 1.2808 0.85608 36.60 2.1529 1.2807 0.85592 36.60 2.1553 1.2804 0.8547 36.63 2.1736 1.2786

4

2.96 0.8971 34.83 1.5393 1.34206 0.89695 34.83 1.5415 1.3418 0.89675 34.83 1.5445 1.3415 0.8952 34.87 1.5677 1.3392
2.95 0.87495 35.54 1.8707 1.3089 0.87482 35.54 1.8726 1.3087 0.87464 35.54 1.8753 1.3084 0.87321 35.58 1.8967 1.3063
2.94 0.8545 36.21 2.1766 1.2783 0.85438 36.21 2.1784 1.2781 0.85421 36.22 2.1809 1.2779 0.85289 36.25 2.2007 1.2759
2.93 0.83544 36.86 2.4617 1.2498 0.83532 36.86 2.4635 1.2496 0.83516 36.87 2.4659 1.2494 0.83392 36.90 2.4845 1.2475

5

2.96 0.8837 34.95 1.7398 1.3220 0.88353 34.96 1.7423 1.3217 0.88334 34.96 1.7451 1.3214 0.88175 35.00 1.7689 1.3191
2.95 0.86095 35.70 2.0801 1.2879 0.8608 35.71 2.0823 1.2877 0.86062 35.71 2.0850 1.2874 0.85918 35.75 2.1066 1.2853
2.94 0.8401 36.41 2.3920 1.2567 0.83995 36.41 2.3943 1.2565 0.83978 36.42 2.3968 1.2563 0.83844 36.46 2.4168 1.2543
2.93 0.82072 37.09 2.6819 1.2278 0.8206 37.09 2.6837 1.2276 0.82044 37.10 2.6861 1.2273 0.81918 37.13 2.7050 1.2254
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Table 4.7: Variation in location of periodic orbit when A2= 0.00001 for Sun–Mars
system.

NL C x

1
2.96 0.98295

2.95 0.96790

2.94 0.95324

2.93 0.93896

2
2.96 0.94149

2.95 0.92251

2.94 0.90450

2.93 0.88734

Table 4.8: Prediction and error for periodic orbit when A2 = 0.00001 for Sun–Mars
system.

NL C Px Ex ER

1

2.920 0.92372 0.92508 0.00136

2.925 0.93105 0.93198 0.00093

2.935 0.94571 0.94605 0.00034

2.945 0.96037 0.9605 0.00013

2.955 0.97503 0.9754 0.00037

2.965 0.98969 0.99069 0.001

2

2.920 0.86768 0.87092 0.00324

2.925 0.8767 0.87904 0.00234

2.935 0.89474 0.89582 0.00108

2.945 0.91278 0.9134 0.00062

2.955 0.93082 0.931875 0.001055

2.965 0.94886 0.9514 0.00254
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Table 4.9: Variation in location of periodic orbit when A2 = 0.0005 for Sun–Mars
system.

NL C x

1
2.96 0.98160

2.95 0.96660

2.94 0.95196

2.93 0.93772

2
2.96 0.93985

2.95 0.92096

2.94 0.90302

2.93 0.88592

Table 4.10: Prediction and error for periodic orbit when A2 = 0.0005 for Sun–Mars
system.

NL C Px Ex ER

1

2.920 0.924400 0.923870 −0.00053

2.925 0.931288 0.930750 −0.00054

2.935 0.945348 0.944800 −0.00055

2.945 0.959787 0.959220 −0.00057

2.955 0.974607 0.974040 −0.00057

2.965 0.989808 0.989290 −0.00052

2

2.920 0.870440 0.869550 −0.00089

2.925 0.878422 0.879040 0.000618

2.935 0.895057 0.895820 0.000763

2.945 0.912587 0.913400 0.000813

2.955 0.931012 0.931875 0.000860

2.965 0.950332 0.951400 0.001068
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Table 4.11: Variation in location of periodic orbit when C = 2.96 for Sun– Mars
system.

NL A2 x

1
0.00001 0.98295

0.00005 0.98285

0.00010 0.98272

0.00050 0.98160

2
0.00001 0.94149

0.00005 0.94136

0.00010 0.94119

0.00050 0.93985

Table 4.12: Prediction and error for periodic orbit when C = 2.96 for Sun–Mars
system.

NL A2 Px Ex ER

1
0.000025 0.982937187 0.982930 −7.1870× 10−6

0.000075 0.982809684 0.98280 −9.6830× 10−6

0.000250 0.982343706 0.98233 −1.3706× 10−5

0.000750 0.980843356 0.98095 1.0664× 10−4

2
0.000025 0.940916751 0.94145 0.000533249

0.000075 0.940750105 0.94128 0.000529895

0.000250 0.940165304 0.94069 0.000524696

0.000750 0.938481234 0.93902 0.000538766
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Table 4.13: Variation in location of periodic orbit when A2= 0.00001 for Sun–Earth
system.

NL C x

1
2.96 0.98300

2.95 0.96790

2.94 0.95325

2.93 0.93900

2
2.96 0.94155

2.95 0.92255

2.94 0.90455

2.93 0.88737

Table 4.14: Prediction and error for periodic orbit when A2 = 0.00001 for Sun–Earth
system.

NL C Px Ex ER

1

2.920 0.922720 0.92510 0.00238

2.925 0.930050 0.93200 0.00195

2.935 0.944710 0.94610 0.00139

2.945 0.959370 0.96055 0.00118

2.955 0.974030 0.97542 0.00139

2.965 0.988690 0.99072 0.00203

2

2.920 0.868600 0.87095 0.00235

2.925 0.877625 0.87909 0.001465

2.935 0.895675 0.89588 0.000205

2.945 0.913725 0.91342 -0.00030

2.955 0.931775 0.93190 0.000125

2.965 0.949825 0.95147 0.001645
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Table 4.15: Variation in location of periodic orbit when A2 = 0.0005 for Sun–Earth
system.

NL C x

1
2.96 0.98170

2.95 0.96660

2.94 0.95200

2.93 0.93775

2
2.96 0.94140

2.95 0.92244

2.94 0.90442

2.93 0.88725

Table 4.16: Prediction and error for periodic orbit when A2 = 0.0005 for Sun–Earth
system.

NL C Px Ex ER

1

2.920 0.922600 0.92501 0.002410

2.925 0.929453 0.93189 0.002437

2.935 0.943478 0.94599 0.002512

2.945 0.957928 0.96044 0.002512

2.955 0.972803 0.97532 0.002517

2.965 0.988103 0.99062 0.002517

2

2.920 0.879640 0.87083 −0.00881

2.925 0.887672 0.87896 −0.00871

2.935 0.904407 0.89573 −0.00868

2.945 0.922037 0.91333 −0.00871

2.955 0.940562 0.93180 −0.00876

2.965 0.959982 0.95130 −0.00868

107



Table 4.17: Variation in location of periodic orbit when C = 2.96 for Sun–Earth
system.

NL A2 x

1
0.00001 0.98300

0.00005 0.98290

0.00010 0.98280

0.00050 0.98170

2
0.00001 0.94155

0.00005 0.94140

0.00010 0.941250

0.00050 0.93990

Table 4.18: Prediction and error for periodic orbit when C = 2.96 for Sun–Earth
system.

NL A2 Px Ex ER

1
0.000025 0.982946715 0.98294 −6.715× 10−6

0.000075 0.982836185 0.98283 −6.185× 10−6

0.000250 0.98240775 0.98240 −7.750× 10−6

0.000750 0.98082725 0.98100 1.7275× 10−4

2
0.000025 0.940916838 0.94150 0.000583162

0.000075 0.940750295 0.94133 0.000579705

0.000250 0.940165088 0.94074 0.000574912

0.000750 0.938473293 0.93906 0.000586707
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4.4 Conclusion

In this chapter, we have studied the effect of oblateness on the position, shape and

size of closed periodic orbits with loops varying from 1 to 5 for Sun–Mars and Sun–

Earth systems, respectively. It is concluded that for given number of loops and given

C, as oblateness increases, location of periodic orbit moves towards Sun. For given

C and given oblateness, as number of loops increases, location of periodic orbits

shift towards Sun. For given value of oblateness and given number of loops, as C

decreases, location of periodic orbit moves towards Sun. Also, period of the orbit

increases as number of loops increases. It is also observed that single–loop orbit is

closest to second primary body. Further, as number of loops decreases, width of the

orbit increases.

The distance of closest approach of the secondary body from the smaller primary

increases with oblateness and number of loops for a given C. Thus, the present

analysis of the two systems–Sun–Mars and Sun–Earth systems–using PSS technique

reveals that A2 and C has substantial effect on the position, shape and size of

the orbit. The PSS together with regression analysis will help one to locate the

position of the periodic orbit with less effort, using the predicted positions from

the analysis. It can be observed that for given oblateness and given number of

loops, as Jacobi constant decreases, initial velocity of secondary body (spacecraft)

and distance of spacecraft from second primary increase and distance of spacecraft

from first primary body decreases. For given Jacobi constant and given number of

loops, as oblateness increases, initial velocity increases and distance of spacecraft

from second primary increases and the distance of spacecraft from first primary

decreases. Thus, the effect of Jacobi constant C and oblateness coefficient A2 is

opposite in nature. For given value of oblateness coefficient and Jacobi constant, as

number of loops increases, distance of spacecraft from second primary increases and

distance of spacecraft from first primary decreases whereas initial velocity of the

spacecraft decreases for orbits from single–loop to three–loops and then increases

for orbits from 3–loops to 5–loops. It is further observed that for Sun–Mars system,

single–loop orbit for A2 = 0.00001 and C = 2.96 is closest to Mars and this distance

is 3.886 × 107 km. For Sun–Earth system, single–loop orbit for A2 = 0.00001 and

C = 2.96 is closest to Earth and this distance is 2.542 × 107 km. Since stability

of this class of periodic orbits is very low, it can be used for designing low–energy
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trajectory design for space mission.
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