
Chapter 6

The Perturbed

Photo–Gravitational Restricted

Three–Body Problem: Analysis of

Resonant Periodic Orbits

6.1 Introduction

The study of resonance in the solar system has received wide attention in the recent

past. A resonance can arise due to a simple numerical relationship between fre-

quencies or periods. The periods involved can be the rotational period and orbital

period of a single body or orbital periods of more than two bodies. The former is

termed as spin–orbit coupling and the latter as orbit–orbit coupling. For instance,

the Earth–Moon spin–orbit is 1:1, while the Neptune–Pluto has a 3 : 2 orbit–orbit

resonance [Murray and Dermot (1999)]. A number of articles have been emerged

related to the study of resonance in the solar system [Pstor et.al. (2009), Cachu-

cho et. al. (2010), Dvorak (2010)] and resonance of orbits of planets outside solar

system [Gayon et. al. (2009), Hadjidemetriou et. al.(2009), Hadjidemetriou and

Voyatzis(2010), Libert and Tsiganis (2011)].

It is important to have an understanding of the dynamics of resonance and to develop
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analytical models that precisely reflect the true nature of resonant interactions.

Since the late twentieth century until today, enormous number of researches have

enriched the study of RTBP. But the influence of the various perturbing forces

has not been studied in many of such interesting problems [Pushparaj and Sharma

(2017)]. Two such forces are due to radiation pressure and oblateness. This is one

of our motivations to study the effect of these perturbing forces on the exterior and

interior resonant periodic orbits.

The aforementioned reasons motivate us to study the resonance phenomena, in the

framework the model of photo–gravitational RTBP, by taking the first primary as

radiating and the second primary as an oblate spheroid. The importance of the

phenomena of resonance in the space dynamics was studied by [Roy and Ovenden

(1954), Murray and Dermot (1999)].

[Tsiganis et. al. (2000)] have studied asteroids with autocorrelation time series func-

tion. [Ferraz–Mello et. al.(2003)] have analyzed existence of asymmetric libration

and their importance for the stability of the 1 : 2 and 1 : 3 resonant motion in satel-

lite and extra solar planetary systems. [Voyatzis and Kotoulas (2005)] have studied

number of resonances associated with the dynamical features of Kuiper belt and

located between 30 and 48 AU. This study is based on the computation of resonant

periodic orbits and their stability. [Voyatzis and Kotoulas (2005)] have described

exterior mean motion resonances 1 : 2, 1 : 3 and 1 : 4 of family of periodic orbits

with Neptune and stability of family of periodic orbits.

Poincaré surface section (PSS) technique given by [Poincare (1892)] is a widely

used technique for analyzing periodic and quasi–periodic orbits in a qualitative way.

[Douskos et. al. (2007)] have investigated numerically using Poincaré surface of

section the stability of evolution of family f for the Earth–Moon system. They

demonstrated that the resonances of third order are the main cause of the reduction

of the stability region of retrograde satellites. [Dutt and Sharma (2010)], [Dutt and

Sharma (2011a)] analyzed periodic orbits for Earth–Moon and Sun– Mars systems

using PSS. [Pathak et. al. (2016a)], [Pathak and Thomas(2016b)] have used PSS

technique to analyze periodic and quasi–periodic orbits for Sun–Saturn system with

actual oblateness of Saturn and solar radiation pressure as perturbation. [Pathak

and Thomas(2016b)] have studied stability analysis and separatrix analysis for dif-

ferent solar radiation pressure using PSS technique. [Pathak and Thomas (2016c)]
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and [Pathak and Thomas (2016d)] have analyzed periodic orbits around both pri-

maries for Sun–Earth and Sun–Mars systems with oblateness and solar radiation

pressure as the perturbation and have studied stability analysis using PSS. The PSS

can be used to identify the periodic, quasi–periodic and chaotic regions in the phase

space. Further, using Jacobi integral and PSS technique we can identify the order

of resonance with the help of number of islands in the PSS.

In the framework of Sitnikov problem, [Perdiou et. al. (2012)] studied the families

of three–dimensional periodic orbits, which bifurcate from self–resonant orbits of the

Sitnikov family at double, triple and quadruple period of the bifurcation orbit. They

have shown that the branch families close upon themselves and remain 3D up to

their terminations having two common members with the Sitnikov family. They also

studied the evolution of some calculated families by varying the parameter of mass

ratio. They have shown that these families are isolated and disappear gradually in

3D reducing to a point size.

This chapter aims to analyse periodic orbits of different orders of resonance, both

interior and exterior using PSS in the photo–gravitational RTBP for two systems,

namely, the Sun–Earth and the Sun–Mars systems. The effect of resonance on the

dynamical structure, location and period of orbits have been studied extensively.

In the framework of the perturbed photo–gravitational RTBP, the first order exterior

resonant orbits and the first, third and fifth order interior resonant periodic orbits

have been analyzed. The location, eccentricity and period of the first order exterior

and interior resonant orbits are investigated in the unperturbed and perturbed cases

for a specified value of Jacobi constant C. It is observed that as the number of loops

increases successively from single–loop to five–loops, the period of secondary body

increases in such a way that the successive difference of periods is either 6 or 7 units.

The evolution of interior first order resonant orbit with three–loops have been studied

for different values of Jacobi constant C. It is observed that when the value of C

increases, the size of the loop decreases and degenerates finally into a circle, the

eccentricity of periodic orbit decreases and location of the periodic orbit moves

towards the second primary body.
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6.2 Estimation of resonant ratio

The equations of motion of the second primary in the dimensionless synodic coor-

dinates are given by equations (1.4.12) through (1.4.16). Jacobi constant C is given

by equation (1.4.21). Mean motion n is given by equation (1.4.17), oblateness coef-

ficient A2 and solar radiation pressure q are given by equations (1.4.18) and (1.4.19)

respectively. The semi–major axis a and the eccentricity e of the orbit of the second

primary are given by equations (1.5.48) through (1.5.51).

The period of planet’s orbit TP is given by the relation

(1 +
3

2
A2)TP = 2π, (6.2.1)

and Kepler’s third law is given by,

T1

T2

=

(

a1
a2

)3/2

. (6.2.2)

So, using semi–major axis of orbit of second primary body and semi–major axis

of orbit of secondary body, we can obtain order of resonance. Which also can be

determined from the number of islands in PSS. This is considered as one of the

characteristic of the resonance [Murray and Dermot (1999)].

Throughout this chapter, coefficient of oblateness is taken as A2 = 0.0001 for both

systems. Thereby the period of Earth’s orbit TE ≈ 6.282714 and the period of Mars’s

orbit TM ≈ 6.282714. While the semi-major axis of Earth’s orbit is aE = 1.0000011

and the semi-major axis of Mars’s orbit aM = 1.0003.

The technique of the determination of p : q ratio for a potential resonant orbit from

its location is investigated. This technique includes the use of Poincaré sections and

two–body approximations as initial assumptions.

From equation (6.2.2), we can obtain the ratio between periods by

p

q
=

Tq

Tp
. (6.2.3)

The difference between p and q is equal to order of the resonance which can be
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determined using PSS of that orbits, because the number of island visible in PSS

indicate the difference of p and q.

The values of a, e and Tp are used to calculate the approximate resonant orbit.

In addition the period p in the p : q ratio can be determined from the number of

loops, thereby q can be evaluated from the value of p with the help of equation

(6.2.3). Hence the values of location and velocity, which are obtained from Poincaré

section and the ratio of p : q from the two–body approximation are used as the

initial condition in the correction scheme to evaluate the desired resonant orbit in

the perturbed RTBP related to Sun–Earth and the Sun–Mars systems. Generally

the above investigations summarize the strategy on estimating resonant ratio from

a surface of section.

6.3 Exterior first order resonance

We have analyzed four families of periodic orbits for exterior first order resonance

in the Sun–Earth and the Sun–Mars systems. These are periodic orbit with exte-

rior resonant orbits possessing inner loops. Family–I is unperturbed by radiation

pressure and oblateness coefficient (i.e. q = 1 and A2 = 0). Perturbation due to

oblateness alone is considered in Family–II (i.e. q = 1 and A2 = 0.0001). Family–III

is characterized by perturbation due to radiation pressure only (i.e. q = 0.9845 and

A2 = 0) and in Family–IV both radiation pressure and oblateness are included (i.e.

q = 0.9845 and A2 = 0.0001). For simplicity in writing the head rows of Tables,

numerical estimates for relevant quantities of family such as: solar radiation pres-

sure, oblateness parameter, number of loops, location of the periodic orbit, number

of islands, resonance order, eccentricity, time period of the orbit and ratio of the

orbital periods will be denoted by FA, SR, OB, NL, LO, NI, RO,EC, TP and

RP , respectively.

Since the period of Earth’s orbit TE ≈ 6.282714 units, it can be noticed that as

the number of loops increases successively from one–loop to five–loops, period of

the orbit of secondary body increases in such a way that the successive difference of

periods differ either by 6 or 7 units as shown in Table 6.1. The period of one–loop

orbit of Family–I is 13, while that of two–loops orbit is 19 with a difference of 6
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units. Now the period of three–loops orbit is 26 so that the difference in the period

of two–loops and three–loops orbits is 7 units. Resonance of order 1 : 2 indicates

that the time taken by Earth to orbit twice around the Sun is equal to the time

taken by the secondary body to orbit once around the Sun. Also period of Mar’s

orbit TM ≈ 6.282714 units. So, in a similar manner it can be noticed that as the

number of loops increases successively from single–loop to five–loops, the period of

the orbit of secondary body increases in such a way that the successive difference of

periods differ either by 6 or 7 units as shown in Table 6.2.

The period of single–loop orbit of Family–I is 13, while that of two–loops orbit is 19

with a difference of 6 units. Now the period of three–loops orbit is 26 so that the

difference in the period of two–loops and three–loops orbits is 7 units. Resonance of

order 1 : 2 indicates that the time taken by Mars to orbit twice around the Sun is

equal to the time taken by the secondary body to orbit once around the Sun. The

PSS of periodic orbit with number of loops one and two are shown in Fig.6.1 and

Table 6.1: Analysis of exterior first order resonance for C = 2.93 for perturbed
Sun–Earth system.

FA SR OB NL LO NI RO EC TP RP

I 1 0

1 0.93904

1

1:2 0.40895 13 0.49936
2 0.88740 2:3 0.32301 19 0.66633
3 0.85623 3:4 0.29337 26 0.74943
4 0.83547 4:5 0.28015 32 0.79977
5 0.82075 5:6 0.27331 38 0.83313

II 1 0.0001

1 0.93877

1

1:2 0.40904 13 0.49945
2 0.88710 2:3 0.32319 19 0.66641
3 0.85592 3:4 0.29358 26 0.74979
4 0.83516 4:5 0.28039 32 0.79982
5 0.82044 5:6 0.27355 38 0.83318

III 0.9845 0

1 0.97895

1

1:2 0.36044 13 0.52805
2 0.93800 2:3 0.26118 19 0.69904
3 0.91210 3:4 0.22428 26 0.78432
4 0.89403 4:5 0.20685 32 0.83562
5 0.88075 5:6 0.19740 38 0.86990

IV 0.9845 0.0001

1 0.97870

1

1:2 0.36081 13 0.52779
2 0.93764 2:3 0.26136 19 0.69919
3 0.91172 3:4 0.22453 26 0.78443
4 0.89363 4:5 0.20713 32 0.83574
5 0.88035 5:6 0.19771 38 0.86999
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Fig.6.2.

Fig.6.1(a) depicts single–loop orbit corresponding to x0 = 0.93904 for the classical

case with q = 1 and A2 = 0, for the unperturbed case. The inner single–loop orbit

has a period 13, and PSS at x0 = 0.93904 gives single island as shown in Fig.6.1(b).

Using the characteristics of resonance for PSS, number of islands indicates order of

the resonance. So the resulting orbit is of first order exterior resonance, because the

ratio of periods T1/T2 ≈ 0.49936 which indicates that the resonance is 1 : 2 type.

In Fig.6.1(c), we have shown a single–loop periodic orbit with perturbation q =

0.9845 and A2 = 0.0001 with period 13 corresponding to x0 = 0.97870. The PSS

at x0 = 0.97870 gives single island as shown in Fig.6.1(d). In this case, the value

of T1/T2 ≈ 0.52779 which indicates that the resonance is of the order 1 : 2. It can

be noticed that the size of the single–loop orbit has reduced due to the effect of

perturbations due to radiation and oblateness.

Table 6.2: Analysis of exterior first order resonance for C = 2.93 for perturbed
Sun–Mars system.

FA SR OB NL LO NI RO EC TP RP

I 1 0

1 0.939000

1

1:2 0.40852 13 0.50015
2 0.887370 2:3 0.32284 19 0.66692
3 0.856190 3:4 0.29324 26 0.75031
4 0.835433 4:5 0.28006 32 0.80033
5 0.820715 5:6 0.27323 38 0.83368

II 1 0.0001

1 0.93875

1

1:2 0.40866 13 0.50017
2 0.88708 2:3 0.32302 19 0.66697
3 0.85588 3:4 0.29346 26 0.75037
4 0.83512 4:5 0.28029 32 0.80039
5 0.82040 5:6 0.27347 38 0.83374

III 0.9845 0

1 0.97891

1

1:2 0.35887 13 0.53027
2 0.93795 2:3 0.26069 19 0.70019
3 0.91204 3:4 0.22397 26 0.78521
4 0.89397 4:5 0.20662 32 0.83643
5 0.88069 5:6 0.19722 38 0.87067

IV 0.9845 0.0001

1 0.97861

1

1:2 0.35895 13 0.53041
2 0.93761 2:3 0.26090 19 0.70018
3 0.91167 3:4 0.22423 26 0.78529
4 0.89358 4:5 0.20691 32 0.83652
5 0.88029 5:6 0.19752 38 0.87076
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(b) PSS at x0 = 0.93904 for q = 1,
A2 = 0.
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(c) Orbit at x0 = 0.97870 for q =

0.9845, A2 = 0.0001.
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(d) PSS at x0 = 0.97870 for q = 0.9845,
A2 = 0.0001.

Figure 6.1: Exterior first order resonant single–loop orbit and PSS for C = 2.93 for
Sun–Earth system.
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(a) Orbit at x0 = 0.88740 for q = 1 and
A2 = 0.
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(b) PSS at x0 = 0.88740 for q = 1,
A2 = 0.
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(c) Orbit at x0 = 0.93764 for q =

0.9845, A2 = 0.0001.
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(d) PSS at x0 = 0.93764 for q = 0.9845,
A2 = 0.0001.

Figure 6.2: Exterior first order resonant two–loops orbit and PSS for C = 2.93 for
Sun–Earth system.
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In Fig.6.2(a), we have displayed two–loops periodic orbits with period 19 corre-

sponding to x0 = 0.88740 in the unperturbed case. The eccentricity of the orbit

is 0.32301. The PSS at x0 = 0.88740 as shown in Fig.6.2(b) consists of a single

island and hence the order of the resonance is one. Furthermore, T1/T2 = 0.66633

indicates that the ratio of resonance is 2 : 3. Fig.6.2(c) and Fig.6.2(d), respectively,

show two–loops periodic orbits and the PSS corresponding to x0 = 0.93764 in the

perturbed case with q = 0.9845 and A2 = 0.0001. The period is same as in the

unperturbed case. The eccentricity of the orbit is 0.26136 and T1/T2 = 0.69919.

As in the single–loop case, the size of the loops in the orbit and the eccentricity

have reduced due to perturbations. The order of the resonance is one and its ratio

is 2 : 3. Similar analysis have been conducted for periodic orbits with number of

loops ranging from 3 to 5 for Family–I and Family–IV in the unperturbed as well as

perturbed cases and arrived at similar conclusions as in single–loop and two–loops

orbit cases.

6.4 Interior first order resonance

In Table 6.3 and Table 6.4, we have displayed relevant quantities for first order

interior resonance for number of loops varying from 2 to 8 for the Sun–Earth and

the Sun–Mars systems. It should be noted that for internal first order resonance

single–loop orbit does not exist. For C = 2.93 we have divided the table into four

families in which Family–I is without perturbation and other families incorporating

perturbation.

Fig. 6.3(a) depicts two–loops orbit at x0 = 0.29385 without perturbation and cor-

responding PSS is given in Fig. 6.3(b) for Sun–Earth system. The two–loops orbit

at x0 = 0.31222 for the Sun–Earth with perturbation and its PSS are given in

Fig. 6.3(c) and Fig. 6.3(d). In all the cases, it can be seen that no loop is formed

around each of the primaries and the orbit is around the larger primary, namely the

Sun. Further, the size of the loop reduces due to perturbation.

In the case of interior resonance for Sun–Earth system, Figure 6.4 shows three–

loops orbits for different Jacobi constant values, when the mass reduction value
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(b) PSS at x0 = 0.29385 for q = 1,
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(c) Orbit at x0 = 0.31222 for q =

0.9845, A2 = 0.0001.
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(d) PSS at x0 = 0.31222 for q = 0.9845,
A2 = 0.0001.

Figure 6.3: Interior first order resonant two–loops orbit and PSS for C = 2.93 for
Sun–Earth system
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q = 0.9845 and the parameter of oblateness A2 = 0.0001. It is clear that the size of

loop decreases with increasing value of Jacobi constant C. These observations are

shown in Figures 6.4(a) – (f), when C = 2.95, 2.97, 2.99, 3.01, 3.02 and 3.03. Figure

6.5 presents the variation in PSS of three–loops periodic orbits, for different values

of C, the oblateness parameter A2 and mass reduction factor q. It is observed that

the shape of the PSS changes and finally degenerates in to circle, as shown in Figure

6.5(a) – (f). In addition, Figure 6.4 and Figure 6.5 show the evolution of three–loops

orbits, with perturbation for Family–IV of the Sun–Earth system together with its

PSS for different values of C. The loops eventually degenerates into a circle.

Figure 6.6 shows variation in the location of the periodic orbits of first order interior

Table 6.3: Analysis of interior first order resonance for C = 2.93 for perturbed
Sun–Earth system.

FA SR OB NL LO NI RO EC TP RP

I 1 0

2 0.29385

1

2:1 0.53353 07 2.00000
3 0.47692 3:2 0.37506 13 1.50000
4 0.55735 4:3 0.32483 19 1.33330
5 0.60105 5:4 0.30258 26 1.24991
6 0.62815 6:5 0.29074 32 1.19981
7 0.64650 7:6 0.28366 38 1.16633
8 0.66000 8:7 0.27897 44 1.14185

II 1 0.0001

2 0.29375

1

2:1 0.53367 07 2.00015
3 0.47675 3:2 0.37525 13 1.50009
4 0.55713 4:3 0.32506 19 1.33339
5 0.60080 5:4 0.30283 26 1.25001
6 0.62788 6:5 0.29100 32 1.19992
7 0.64627 7:6 0.28391 38 1.16635
8 0.65980 8:7 0.27921 44 1.14180

III 0.9845 0

2 0.31234

1

2:1 0.47832 07 2.15851
3 0.50990 3:2 0.30776 13 1.58182
4 0.59888 4:3 0.25104 19 1.39854
5 0.64770 5:4 0.22523 26 1.30827
6 0.67801 6:5 0.21135 32 1.25452
7 0.69851 7:6 0.20301 38 1.21879
8 0.71327 8:7 0.19758 44 1.19323

IV 0.9845 0.0001

2 0.31222

1

2:1 0.47848 07 2.15875
3 0.50970 3:2 0.30799 13 1.58195
4 0.59861 4:3 0.25133 19 1.39869
5 0.64740 5:4 0.22554 26 1.30839
6 0.67768 6:5 0.21168 32 1.25465
7 0.69819 7:6 0.20333 38 1.21887
8 0.71290 8:7 0.19793 44 1.19338
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(d) Orbit at x0 = 0.65610 and C =

3.01.
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(e) Orbit at x0 = 0.69590 and C =

3.02.
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(f) Orbit at x0 = 0.75300 and C = 3.03.

Figure 6.4: Variation in three–loops interior first order resonant orbit when q =
0.9845 and A2 = 0.0001 in the Sun–Earth system.
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(a) PSS at x0 = 0.53653 and C = 2.95.
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(b) PSS at x0 = 0.56750 and C = 2.97.
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(c) PSS at x0 = 0.60501 and C = 2.99.
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(d) PSS at x0 = 0.65610 and C = 3.01.
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(e) PSS at x0 = 0.69590 and C = 3.02.
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(f) PSS at x0 = 0.75300 and C = 3.03.

Figure 6.5: Variation in PSS of three–loops orbit due to interior first order resonance
when q = 0.9845, A2 = 0.0001 in the Sun–Earth system.
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Table 6.4: Analysis of interior first order resonance C = 2.93 for perturbed Sun–
Mars system.

FA SR OB NL LO NI RO EC TP RP

I 1 0

2 0.29386

1

2:1 0.53352 07 2.00090
3 0.47693 3:2 0.37504 13 1.50067
4 0.55734 4:3 0.32482 19 1.33393
5 0.60102 5:4 0.30258 26 1.25055
6 0.62808 6:5 0.29075 32 1.20005
7 0.64637 7:6 0.28369 38 1.16792
8 0.65954 8:7 0.27911 44 1.14323

II 1 0.0001

2 0.293750

1

2:1 0.533670 07 2.00105
3 0.476745 3:2 0.375250 13 1.50079
4 0.557125 4:3 0.325050 19 1.33402
5 0.600770 5:4 0.302830 26 1.25065
6 0.627830 6:5 0.291011 32 1.20058
7 0.646100 7:6 0.283950 38 1.16722
8 0.659270 8:7 0.279370 44 1.14331

III 0.9845 0

2 0.31235

1

2:1 0.47831 07 2.15947
3 0.50991 3:2 0.30774 13 1.58251
4 0.59887 4:3 0.25103 19 1.39922
5 0.64768 5:4 0.22522 26 1.30892
6 0.67797 6:5 0.21134 32 1.25519
7 0.69843 7:6 0.20301 38 1.21952
8 0.71309 8:7 0.19761 44 1.19412

IV 0.9845 0.0001

2 0.31223

1

2:1 0.478470 07 2.15970
3 0.50971 3:2 0.307980 13 1.58266
4 0.59860 4:3 0.251320 19 1.39936
5 0.64738 5:4 0.225530 26 1.30905
6 0.67764 6:5 0.211567 32 1.25532
7 0.69809 7:6 0.203340 38 1.21963
8 0.71273 8:7 0.197960 44 1.19426

Table 6.5: Variation in three–loops orbit due to variation in C for q = 0.9845 and
A2 = 0.0001 for Sun–Earth system

JC LO NI RO EC TP RP

2.93 0.50970

1 3:2

0.30799

13

1.58195
2.95 0.53653 0.27320 1.57665
2.97 0.56750 0.23304 1.57112
2.99 0.60501 0.18439 1.56524
3.01 0.65610 0.11817 1.55825
3.02 0.69590 0.06656 1.55357
3.03 0.75300 0.01658 1.56821
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Figure 6.6: Variation in location of the first order interior and exterior resonant
periodic orbit for C = 2.93 in perturbed case (q = 0.9845, A2 = 0.0001) and ideal
case (q = 1, A2 = 0) for the Sun–Earth system.

and exterior resonance in ideal case (i.e. q = 1 and A2 = 0) and in perturbed case

(i.e. q = 0.9845 and A2 = 0.0001) in the Sun–Earth system. It is clearly seen that

for the exterior resonance as the number of loops increases, location of the periodic

orbit moves towards the Sun whereas for the interior resonance as the number of

loops increases, location of the periodic orbit moves away from the Sun.

In this context the location of exterior or interior first order resonant orbits moves

away from the Sun whenever perturbation is included. From locations of orbits it

can be seen that exterior resonant orbits with and without perturbation are nearer

to the Earth whereas interior resonant orbits are nearer to the Sun. So, for the orbit

having same number of loops, location of interior resonant orbit is nearer to the Sun

in comparison with exterior resonant orbit.

Figure 6.7 shows variation in the eccentricity of periodic orbits of first order interior

and exterior resonance in classical case (i.e. q = 1 and A2 = 0) and in perturbed

Table 6.6: Variation in three–loops orbit due to variation in C for q = 0.9845 and
A2 = 0.0001 in the Sun–Mars system

JC LO NI RO EC TP RP

2.93 0.50971

1 3:2

0.30798

13

1.58266
2.97 0.56750 0.23303 1.57184
3.01 0.65608 0.11815 1.55901
3.02 0.69590 0.06651 1.55431
3.03 0.75200 0.01514 1.56908
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Figure 6.7: Variation in eccentricity of the first order interior and exterior resonant
periodic orbit for C = 2.93 in perturbed case (q = 0.9845, A2 = 0.0001) and ideal
case (q = 1, A2 = 0) for the Sun–Earth system

case (i.e. q = 0.9845 and A2 = 0.0001) for the Sun–Earth system. It is clearly seen

that for all four cases eccentricity of the periodic orbit decreases as number of loops

increases. Eccentricity of interior resonant periodic orbit in ideal case is highest

among all the four cases.

As perturbation due to solar radiation pressure of Sun and oblateness of Earth in-

creases eccentricity of the periodic orbit decreases. Eccentricity of exterior resonant

periodic orbit in the perturbed case is lowest among all the four cases. Among the

orbits having same number of loops, eccentricity of interior resonant orbit is more

in comparison to exterior resonant orbit.
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Figure 6.8: Variation in location and eccentricity of first order interior three–loops
orbit when q = 0.9845 and A2 = 0.0001 for Sun–Earth system.

Fig. 6.8 shows variation in location and eccentricity of three–loops interior resonant

periodic orbit due to variation in C in perturbed case (i.e. q = 0.9845 and A2 =

0.0001) for the Sun–Earth system. As C increases, location of periodic orbit moves

away from the Sun and eccentricity decreases. Figures (6.9 – 6.11) show similar
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Figure 6.9: Variation in location of the first order interior and exterior resonant
periodic orbit for C = 2.93 in perturbed case (q = 0.9845, A2 = 0.0001) and ideal
case(q = 1, A2 = 0) in the Sun–Mars system.

results for the Sun–Mars system.
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Figure 6.10: Variation in eccentricity of the first order interior and exterior resonant
periodic orbit for C = 2.93 in perturbed case (q = 0.9845, A2 = 0.0001) and ideal
case (q = 1, A2 = 0) for the Sun–Mars system.

6.5 Interior resonance of third order

In this section we have analyzed the third order resonant orbits with different num-

ber of loops for different parameters of the orbit. The variations of position and

eccentricity for different values of the Jacobi constant C for seven–loops orbit is

given in Table 6.7 for the Sun–Earth system and in Table 6.8 for the Sun–Mars

system.

Figures 6.12(a) – (c) are seven–loops orbits for C = 2.93, 2.96 and 2.98, respectively,

for q = 0.9845 and A2 = 0.0001. It can be noticed that the size of the periodic orbit

as well as size of the loops decrease with increase in the value of C when q and A2
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Figure 6.11: Variation in location and eccentricity of interior first order three–loops
orbit for q = 0.9845, A2 = 0.0001 and C = 2.93 for the Sun–Mars system.

are fixed. However, the period of the orbits remain same as 26 indicating that an

increase in C decreases the orbital velocity of the particle.

Similar observation have been made in the Sun–Mars system too. The PSS at x =

0.39923 for C = 2.93, q = 0.9845 and A2 = 0.0001 for the Sun–Earth system given

in Figure 6.13(a) shows three islands indicating third order of resonance. Figure

6.13(b) is the magnified version of one of the islands of Figure 6.13(a).

Table 6.7: Variation in third order interior resonant seven loops orbit due to varia-
tion in C for the Sun–Earth system

JC LO NI RS EC TP RP

2.93 0.39923
3 7:4

0.39522
26

1.86449
2.96 0.42824 0.35353 1.85476
2.98 0.44991 0.32238 1.84836

Table 6.8: Variation in third order interior resonant seven– loops orbit due to vari-
ation in C for the Sun–Mars system

JC LO NI RS EC TP RP

2.93 0.39923
3 7:4

0.39521
26

1.86534
2.96 0.42823 0.35353 1.85564
2.98 0.44991 0.32232 1.84921

Numerical estimates of position, eccentricity, period and other relevant quantities
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(a) Orbit at x0 = 0.39923 and C =

2.93.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

(b) Orbit at x0 = 0.42824 and C =

2.96.
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(c) Orbit at x0 = 0.44991 and C =

2.98.

Figure 6.12: Variation in interior third order resonant seven–loops orbit for q =
0.9845, A2 = 0.0001 and C = 2.93 for Sun – Earth system.
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(a) PSS at x0 = 0.39923 and C = 2.93.
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(b) Enlarged PSS at x0 = 0.39923 for
C = 2.93.

Figure 6.13: PSS of interior third order resonant seven–loops orbit of Family–I for
q = 0.9845, A2 = 0.0001 and C = 2.93 for Sun–Earth system
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for third order interior resonance, with number of loops varying from 7 to 14 for

Sun–Earth and Sun–Mars systems are shown in Table 6.9 and Table 6.10. They are

divided in to two families; Family–I and Family–II. Seven–loops orbit from Family–I

has period 26 while seven–loops orbit in Family–II has period 32. These orbits are

7 : 4 resonant orbits. For a given number of loops, and the given resonance, period

of Family–II orbit is more than period of Family–I orbit.

Orbits of Family–I are around the first primary only, whereas, orbits of Family–II

are around both primaries in which one of the loops of the orbit is around the second

primary body, namely, Earth or Mars. Periodic orbits with loops 7, 8, 10, 11, 13

and 14 of Family–I with third order interior resonance for the Sun–Earth system for

Table 6.9: Third order interior resonance C = 2.93 in the Sun–Earth system.

FA NL LO NI RO EC TP RP

I

7 0.39923

3

7:4 0.39522 26 1.86449
8 0.46231 8:5 0.34307 32 1.69384
10 0.54635 10:7 0.28318 44 1.50281
11 0.57515 11:8 0.26511 51 1.44432
13 0.61796 13:10 0.24063 63 1.36221
14 0.63358 14:11 0.23244 70 1.33343

II
7 0.56160

3
7:4 0.27346 32 1.47147

9 0.62620 9:6 0.23625 44 1.34696
11 0.66415 11:8 0.21766 57 1.27850
13 0.68886 13:10 0.20702 70 1.23510

Table 6.10: Third order interior resonance C = 2.93 for Sun–Mars system.

FA NL LO NI RO EC TP RP

I

7 0.39923

3

7:4 0.39521 26 1.86534
8 0.46235 8:5 0.34303 32 1.69452
10 0.54630 10:7 0.28320 44 1.50361
11 0.57521 11:8 0.26506 51 1.44487
13 0.61783 13:10 0.24068 63 1.36310
14 0.63380 14:11 0.23231 70 1.33366

II
7 0.56158

3
7:4 0.27346 32 1.47220

9 0.62616 9:6 0.23626 44 1.34767
11 0.66413 11:8 0.21764 57 1.2794
13 0.68878 13:10 0.20702 70 1.23584
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q = 0.9845, A2 = 0.0001 and C = 2.93 are shown in Fig. 6.14(a)–(f), respectively.

The PSS at x0 = 0.5616 for C = 2.93, q = 0.9845 and A2 = 0.0001 in the Sun–

Earth system given in Fig.6.15(a) contains three islands indicating third order of

resonance. Fig.6.15(b) is the magnified version of one of the islands of Fig. 6.15(a).

Periodic orbits with number of loops 7, 9, 11 and 13 of Family–II for the Sun–Earth

system are shown in Fig. 6.16 (a)–(d), respectively.
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(a) Seven–loops orbit at x0 = 0.39923.
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(b) Eight–loops periodic orbit at x0 =

0.46231.
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(c) Ten–loops periodic orbit at x0 =

0.54635.
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(d) Eleven–loops periodic orbit at x0 =

0.57515.
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(e) Thirteen–loops periodic orbit at
x0 = 0.61796.
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(f) Fourteen–loops periodic orbit at
x0 = 0.63358.

Figure 6.14: Family–I interior third order resonant orbits for q = 0.9845, A2 =
0.0001 and C = 2.93 for Sun–Earth system.
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(a) PSS at x = 0.56160.
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(b) Enlarged PSS at x = 0.56160.

Figure 6.15: PSS of interior third order resonant seven loops orbits from Family–II
for q = 0.9845, A2 = 0.0001 and C = 2.93 for Sun–Earth system.
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(a) Seven–loops orbit at x0 = 0.56160.
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(b) Nine–loops periodic orbit at x0 =

0.62620.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

(c) Eleven–loops periodic orbit at x0 =

0.66415.
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(d) Thirteen–loops periodic orbit at
x0 = 0.68886.

Figure 6.16: Family–II interior third order resonant orbits for q = 0.9845, A2 =
0.0001 and C = 2.93 for Sun–Earth system
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6.6 Interior resonance of fifth order

Table 6.11: Fifth order interior resonance C = 2.93 for Sun–Earth system.

FA NL LO NI RO EC TP RP

I

11 0.36792

5

11:6 0.42357 38 1.96103
12 0.41350 12:7 0.38286 44 1.82332
13 0.45107 13:8 0.35190 51 1.72225
14 0.48277 14:9 0.32751 57 1.64406
16 0.53281 16:11 0.29211 70 1.53139
17 0.55295 17:12 0.27893 76 1.48915

II

15 0.58150

5

15:10 0.26122 70 1.43180
17 0.61344 17:12 0.24307 82 1.37065
19 0.63733 19:14 0.23053 95 1.32660
21 0.65640 21:16 0.22124 107 1.29228
23 0.67095 23:18 0.21460 120 1.26649

Table 6.12: Fifth order interior resonance C = 2.93 for Sun–Mars system.

FA NL LO NI RO EC TP RP

I

11 0.36790

5

11:6 0.42359 38 1.96199
12 0.41345 12:7 0.38289 44 1.82430
13 0.45118 13:8 0.35180 51 1.72276
14 0.48285 14:9 0.32744 57 1.64463
16 0.53273 16:11 0.29216 70 1.53227
17 0.55264 17:12 0.27912 76 1.49047

II

15 0.58152

5

15:10 0.26127 70 1.43243
17 0.61335 17:12 0.24310 82 1.37146
19 0.63740 19:14 0.23048 95 1.32710
21 0.65623 21:16 0.22130 107 1.29319
23 0.67119 23:18 0.21447 120 1.26667

Numerical estimates of different orbital elements of fifth order interior resonance

with number of loops varying from 11 to 23 for the Sun–Earth and the Sun–Mars

systems are shown in Table 6.11 and Table 6.12. They are divided in to two families;

Family–I and Family–II. Seventeen–loops orbit from Family–I has period 76 where

as Family–II has period 82. These orbits are 17 : 12 resonance orbits. So, for the

given number of loops, and the given order of resonance, period of Family–II orbit is

more than period of Family–I orbit. Orbits of Family–I are around the first primary

only, whereas, orbits of Family–II are around the second primary, namely, Earth or

Mars.
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The PSS at x0 = 0.36792 for C = 2.93, q = 0.9845 andA2 = 0.0001 in the Sun–Earth

system given in Fig. 6.17(a) contains five islands indicating fifth order of resonance.

Fig. 6.17(b) is the magnified version of one of the islands of Fig. 6.17(a). Orbits with

loops varying from 11, 12, 13, 14, 16 and 17 of Family–I with fifth order interior

resonance for the Sun–Earth system for q = 0.9845, A2 = 0.0001 and C = 2.93 are

shown in Fig. 6.18(a)–(f), respectively.

Periodic orbits with loops 15, 17, 19, 21 and 23 of Family–II for the Sun–Earth

system are shown in Fig. 6.19(a)–(d), respectively.
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(a) PSS at x0 = 0.36792.
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(b) Enlarged PSS at x0 = 0.36792.

Figure 6.17: PSS of interior fifth order resonant eleven– loops orbits from Family–II
for q = 0.9845, A2 = 0.0001 and C = 2.93 in the Sun–Earth system.

The variation in the location of third and fifth order resonant orbits for C = 2.93,

q = 0.9845 and A2 = 0.0001 in the Sun–Earth system for Family–I and Family–II

is shown in Fig. 6.20 against the number of loops of the periodic orbits. It can be

noticed that the location of the orbit shifts towards the second primary body as the

number of loops increases. Family–I and II of third order resonance and Family–I of

fifth order resonance contain periodic orbit having 11 and 13–loops. From location

of these orbits as shown in Fig. 6.20, it is clear that for the given number of loops,

as order of resonance increases location of periodic orbits moves towards the Sun.

The variation in the eccentricity of third and fifth order resonant orbits for C = 2.93,

q = 0.9845 and A2 = 0.0001 for Sun–Earth system for Family–I and Family–II are

shown in Fig. 6.21 against the number of loops of the periodic orbits. It can be

noticed that the eccentricity of the orbit decreases as the number of loops increases.

Also, eccentricity of the Family–I orbit is higher than the Family–II orbit for the

given order of resonance. From eccentricity of 11 and 13–loops orbits as shown in
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(a) Eleven–loops orbit at x0 = 0.36792.
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(b) Twelve–loops periodic orbit at x0 =

0.41350.
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(c) Thirteen–loops periodic orbit at
x0 = 0.45107.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

(d) Fourteen–loops periodic orbit at
x0 = 0.48277.
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(e) Sixteen–loops periodic orbit at x0 =
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(f) Seventeen–loops periodic orbit at
x0 = 0.55295.

Figure 6.18: Family-I interior fifth order resonant orbits for q = 0.9845, A2 = 0.0001
and C = 2.93 for Sun–Earth system.
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(a) Fifteen–loops orbit at x0 = 0.58150.
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(b) Seventeen–loops periodic orbit at
x0 = 0.61344.
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(c) Nineteen–loops periodic orbit at
x0 = 0.63733.
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(d) Twenty one–loops periodic orbit at
x0 = 0.65640.
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(e) Twenty three–loops periodic orbit at
x0 = 0.67095.

Figure 6.19: Family–II interior fifth order resonant orbits for q = 0.9845, A2 =
0.0001 and C = 2.93 for Sun–Earth system.
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Fig. 6.21, it is clear that for a given number of loops, as order of resonance increases

eccentricity increases.

The variation in the period of third and fifth order resonant orbits for C = 2.93,

q = 0.9845 and A2 = 0.0001 in the Sun–Earth system for Family–I and Family–II

is shown in Fig. 6.22 against the number of loops of the periodic orbits. It can

be noticed that the period of the orbit increases as the number of loops increases.

Also, period of the Family–II orbit is higher than the Family–I orbit for the given

order of resonance. From period of 11 and 13–loops orbits shown in Fig. 6.22, it is

clear that, for the given number of loops, as order of resonance increases, the period

decreases, which is obvious. In addition, Figs. (6.23 – 6.25) show similar results for

the Sun–Mars system.
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Figure 6.20: Variation in location of the interior third and interior fifth order res-
onant periodic orbits for q = 0.9845, A2 = 0.0001 and C = 2.93 for Sun–Earth
system.
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Figure 6.21: Variation in eccentricity of the interior third and interior fifth order
resonant periodic orbits for q = 0.9845, A2 = 0.0001 and C = 2.93 for Sun–Earth
system.
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Figure 6.22: Variation in period of the interior third and interior fifth order resonant
periodic orbits for q = 0.9845, A2 = 0.0001 and C = 2.93 for Sun–Earth system.
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Figure 6.23: Variation in location of the interior third and interior fifth order res-
onant periodic orbits for q = 0.9845, A2 = 0.0001 and C = 2.93 for Sun–Mars
system.
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Figure 6.24: Variation in eccentricity of the interior third and interior fifth order
resonant periodic orbits for q = 0.9845, A2 = 0.0001 and C = 2.93 for Sun–Mars
system.
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Figure 6.25: Variation in period of the interior third and interior fifth order resonant
periodic orbits for q = 0.9845, A2 = 0.0001 and C = 2.93 Sun–Mars system.
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6.7 Conclusion

We have studied exterior and interior first, third and fifth order resonances in the

photo–gravitational restricted three–body problem, by numerical methods for the

Sun–Earth and the Sun–Mars systems considering the Sun as a radiating body and

Earth and Mars as oblate spheroids. In this context, the first order exterior and

interior resonant orbits, location, eccentricity and period of the orbits are analyzed

with and without perturbation for C = 2.93. It is observed that for the given order

of resonance, period of the orbit is increased by exactly 6 or 7 units as number of

loops is increased by 1 because period of the Earth’s orbit is 6.282714 and period of

Mars’s orbit is 6.282714 units.

It is concluded that for the external resonance as the number of loops increases loca-

tion of the periodic orbit moves towards the Sun whereas for the internal resonance,

as the number of loops increases, location of the periodic orbit moves away from

the Sun. Also, location of exterior or interior first order resonant orbits moves away

from the Sun whenever perturbation is included. While from location of orbits, we

can notice that exterior resonant orbits with and without perturbation are nearer to

the Earth whereas interior resonant orbits are nearer to the Sun. So, for the orbit

having same number of loops, location of interior resonant orbit is nearer to the Sun

in comparison to the exterior resonant orbit.

Eccentricity of the periodic orbit decreases as number of loops increases for both

interior and exterior resonance in both perturbed and unperturbed cases. Also, for

the orbit having same number of loops, eccentricity of interior resonant orbit is more

in comparison to exterior resonant orbit. We also observe that for the given order

of resonance as perturbation increases eccentricity of the periodic orbit decreases.

Furthermore, we study the evolution of three loops orbit for interior first order

resonance by changing value of Jacobi constant C. As value of C increases, size of

the loop reduces, and hence the shape of the orbit changes and finally it becomes

circle. Thus, as C increases, eccentricity of the periodic orbit decreases and location

of the periodic orbit moves towards the second primary body, namely, Earth or

Mars.

As the number of loops increases, the location of third and fifth order resonant orbits
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for C = 2.93, q = 0.9845 and A2 = 0.0001 shifts towards the second primary. Third

and fifth order resonant orbits are divided in to two families. Orbits of Family–I

are around the first primary only, whereas, orbits of Family–II are around both

the primaries in which one of the loops of the orbit is around the second primary

body, namely, Earth or Mars. It is concluded that for the given number of loops, as

order of resonance increases location of periodic orbits moves towards the Sun. Also,

eccentricity of the orbit decreases as the number of loops increases, and eccentricity

of Family–I orbit is more than Family–II orbit for a given order of resonance.

It can be observed that for the given number of loops, as order of resonance in-

creases eccentricity increases. Period of the first, third and fifth order resonant orbit

increases as the number of loops increases. Also, period of Family–II orbit is more

than the Family–I orbit for the given order of resonance. Further, we notice that for

the given number of loops, as order of resonance increases period decreases, which

is obvious.
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