Contents

S. No.	Title	Page No.
	<u>Chapter I:</u>	
	Introduction	
1.	Introduction	2
1.1.	Organic Pollutants	3
1.2	Inorganic Pollutants	3
1.2.1	Lead	4
1.3.	Dyes	5
1.3.1.	Methylene Blue	5
1.3.2	Malachite Green	5
1.3.3.	Methyl Orange	6
1.3.4.	Rhodamine 6G	6
1.3.5	Rhodamine B	6
1.4	Adsorption	7
1.5	Adsorbent	7
1.5.1	Magnetic Nanoadsorbents	8
1.5.1.1	Cyclodextrins	8
1.5.2.	Hydrogel	9
1.5.2.1.	Dextran	9
1.5.3.	Bioadsorbent	10
1.6	Sensing	10
	References	12-17
	Chapter II:	
	Synthesis, characterization and application of β -cyclodextrin	
	based magnetic nanoadsorbent for simultaneous adsorption of	
	hydrophilic and hydrophobic dyes	
2.1	Introduction	19
2.2.	Materials and Methods	21

2.2.1.	Materials	21
2.2.2	Synthesis of Super paramagnetic Nano-Adsorbent (SPNA)	22
2.2.3.	Characterization of SPNA	22
2.2.4.	Adsorption of Dyes	23
2.2.5.	Simultaneous Adsorption Studies of Hydrophilic and Hydrophobic	24
	Dyes	
2.2.6.	Desorption Experiment and Reusability	24
2.3.	Results and Discussion	24
2.3.1	Synthesis of SPNA	24
2.3.2.	NMR Spectra Analysis	25
2.3.3.	FTIR Spectra Analysis	27
2.3.4.	X-Ray Diffractogram Analysis	28
2.3.5.	HR-TEM Analysis	29
2.3.6.	Dynamic Light Scattering Analysis	30
2.3.7.	VSM Analysis	31
2.3.8.	TGA Analysis	32
2.3.9.	BET Analysis	33
2.3.10.	Selectivity of Adsorption (Effect of Cavity of Cyclodextrin)	34
2.3.11.	Effect of SPNA dosage	35
2.3.12.	Effect of contact time	36
2.3.13.	Effect of pH	36
2.3.14.	Effect of Initial Concentration	38
2.3.15.	Effect of Temperature	38
2.3.16.	Adsorption isotherms	39
2.3.17.	Adsorption Kinetics	42
2.3.18.	Simultaneous Adsorption Studies of Hydrophilic and Hydrophobic	43
	Dyes	
2.3.19.	Desorption and Recyclability	44
2.3.20.	Adsorption Mechanism	45
2.3.21.	Comparison with Other Adsorbents	47
2.4.	Conclusion	48

References	49-56
Published Paper	57

	Chapter III:	
	The application of dextran based hydrogel for elimination of	
	organic dyes and reduction of nitrophenols	
3.1	Introduction	59
3.2	Materials and Methods	61
3.2.1	Materials	61
3.2.2.	Synthesis of Hydrogel (DEX-HMDI)	61
3.2.3.	Characterization of DEX-HMDI	62
3.2.4.	Measurements of Swelling Characteristics	63
3.2.4.1.	Swelling kinetics	63
3.2.4.2.	pH and Salt sensitivity	63
3.2.4.3.	Water Retention Capacity	63
3.2.5.	Adsorption of Dyes	64
3.2.6.	Desorption Experiment and Reusability	65
3.2.7.	Preparation of Ag@Hydrogel	65
3.2.8.	Reduction of 4-NP Catalyzed by Ag@Hydrogel	65
3.3.	Result and Discussion	66
3.3.1	Characterization Techniques	66
3.3.1.1.	Solid State NMR Spectra Analysis	66
3.3.1.2.	FTIR Spectra Analysis	67
3.3.1.3.	XRD Analysis	67
3.3.1.4.	EDS Analysis	68
3.3.1.5.	Thermogravimetric Analysis	69
3.3.2.	Swelling behavior of the hydrogel	70
3.3.2.1.	Deionized water	70
3.3.2.2.	Different pH values	70
3.3.2.3	Different concentration of saline solutions	70
3.3.3.	Water retention profile of the hydrogel	71

3.3.4.	Effect of various parameters on adsorption of dyes	71
3.3.4.1.	Effect of pH	71
3.3.4.2.	Effect of the Hydrogel Dosage	72
3.3.4.3.	Effect of Initial Concentration	72
3.3.4.4.	Effect of Temperature	72
3.3.4.5.	Effect of Contact Time	74
3.3.5.	Adsorption Isotherm	74
3.3.6.	Adsorption Thermodynamics	76
3.3.7.	Adsorption Kinetics	79
3.3.8.	Adsorption Studies in Binary Mixture of Dyes	81
3.3.9.	Desorption and Recyclability	82
3.3.10.	Adsorption Mechanism	84
3.3.11.	Comparison Table of other Hydrogels	86
3.3.12.	Valorization of Waste Expensive Metal Ions entrapped in the	88
	hydrogel matrix to Valuable Metal Nanoparticles for removal of	
	Nitroaromatics in Water	
3.3.13.	Reduction of Nitroaromatics and Sunlight Mediated Photocatalytic	90
	Capability of Ag@Hydrogel	
3.4	Future perspectives for commercialization of hydrogel and	93
	remediation on a large scale	
3.5.	Conclusion	96
	References	97-104
	Published Paper	105
	Chapter IV:	
	Development of crosslinked β -cyclodextrin polymer	
	functionalized gold nanosensor for detection of sulphur based	
	amino acid and agrochemicals	
4.1.	Introduction	107
4.2.	Materials and Methods	109
4.2.1	Materials	109

4.2.2.	Characterization	109
4.2.3.	Synthesis of Au and Ag derived nano-sensors	109
4.2.3.1.	CDPA polymer synthesis	109
4.2.3.2.	Synthesis of Au derived functional nano-sensor AuNS@CDPA	110
4.2.3.3.	Synthesis of Ag derived functional nano-sensor AgNS@CDPA	110
4.2.4.	Preparation of Samples	110
4.2.5.	The colourimetric sensing ability of AuNS@CDPA and	111
	AgNS@CDPA towards sulfur-based compounds	
4.3.	Result and Discussion	111
4.3.1.	Characterization of nano-sensors	112
4.3.1.1.	NMR Analysis	112
4.3.1.2.	FTIR Analysis	114
4.3.1.3.	UV-vis spectrophotometric determination	114
4.3.1.4.	HR-TEM Analysis	116
4.3.1.5.	DLS and Zeta potential	118
4.3.1.6.	FESEM-EDX Analysis	118
4.3.2.	Colourimetric Detection of sulfur-based compounds	118
4.3.2.1.	Sensing of Amino Acids	118
4.3.2.2.	Selective sensing of Cysteine in a mixture of amino acids	121
4.3.2.3.	Sensing of Agrochemicals	121
4.3.2.4.	Selective sensing of sulfur-based Agrochemicals in a mixture	124
4.3.3.	Effect of pH and NaCl concentration	124
4.3.4.	Natural and real sample analysis	127
4.3.5.	Selectivity and Sensitivity of AuNS@CDPA and AgNS@CDPA as	128
	a visible colourimetric detection system in a mixture of analytes	
4.3.6.	Analytical Performance	129
4.3.7.	Mechanism	130
4.4.	Conclusion	135
	References	136-142
	Published Paper	143

	Chapter V (A):	
	Assessment of seaweed bioadsorbent (Fucus vesiculosus) for	
	removal of methylene blue and rhodamine B dyes	
5.1.1.	Introduction	145
5.1.2.	Materials and Methods	147
5.1.2.1.	Materials	147
5.1.2.2.	Preparation of <i>Fucus vesiculosus</i> Seaweed Bioadsorbent (FVSB)	147
5.1.2.3.	Characterization of FVSB	147
5.1.2.4.	Adsorption of Organic Dyes	148
5.1.2.5.	Simultaneous Adsorption of MB and RB	149
5.1.2.6.	Desorption Experiment and Reusability	149
5.1.3.	Results and Discussion	149
5.1.3.1.	Characterization of Bioadsorbent	149
5.1.3.1.1.	FTIR Spectra Analysis	149
5.1.3.1.2.	SEM-EDX Analysis	150
5.1.3.1.3.	TGA Analysis	152
5.1.3.2.	Effect of FVSB Dosage	153
5.1.3.3.	Effect of Initial Concentration	153
5.1.3.4.	Effect of pH	154
5.1.3.5.	Effect of Contact Time	156
5.1.3.6.	Effect of Temperature	156
5.1.3.7.	Adsorption Isotherms	157
5.1.3.8.	Adsorption Kinetics	160
5.1.3.9.	Adsorption Thermodynamics	161
5.1.3.10.	Simultaneous Adsorption Study of MB and RB	163
5.1.3.11.	Desorption and Regeneration	164
5.1.3.12.	Adsorption Mechanism	166
5.1.3.13.	Adsorption of real sample using FVSB	167
5.1.3.14.	Comparison with Other Adsorbents	168
5.1.4.	Conclusion	169
	References	170-177

Chapter V (B):

Citrus limetta derived eco-friendly bioadsorbent for efficient elimination of organic dyes and heavy metal ions

5.2.1.	Introduction	179
5.2.2.	Materials and Methods	181
5.2.2.1.	Materials	181
5.2.2.2.	Synthesis of Modified Citrus limetta (MCL)	181
5.2.2.3.	Characterization of MCL	182
5.2.2.4.	Adsorption of organic and inorganic pollutants	183
5.2.2.5.	Simultaneous Adsorption of MB and Pb ²⁺	184
5.2.2.6.	Desorption Experiment and Reusability	184
5.2.3.	Result and Discussion	184
5.2.3.1.	Characterization of Bioadsorbent	184
5.2.3.1.1	FTIR Spectra Analysis	184
5.2.3.1.2.	SEM-EDX Analysis	186
5.2.3.1.3.	BET Analysis	187
5.2.3.1.4.	TGA Analysis	188
5.2.3.1.5.	DLS Analysis	189
5.2.3.1.6.	XRD Analysis	190
5.2.3.2.	Effect of MCL Dosage	191
5.2.3.3.	Effect of Initial Concentration	191
5.2.3.4.	Effect of pH	193
5.2.3.5.	Effect of Contact Time	194
5.2.3.6.	Effect of Temperature	195
5.2.3.7.	Adsorption Isotherms	196
5.2.3.8.	Adsorption Kinetics	199

5.2.3.9.	Adsorption Thermodynamics	200
5.2.3.10.	Simultaneous Adsorption Study of MB and Pb ²⁺	203
5.2.3.11.	Desorption and Regeneration of MCL	204
5.2.3.12.	Adsorption Mechanism	205
5.2.3.13.	Adsorption of environmental sample using MCL bioadsorbent	206
5.2.3.14.	Comparison with Other Bioadsorbents	207
5.2.4.	Conclusion	208
	References	210-218
	Published papers, book chapters, conferences and seminars	219-232

List of Figures

Figure	Title	Page
No.		Number
2.1	Schematic for synthesis of SPNA	24
2.2	NMR spectra for CD-MA	25
2.3	1H NMR spectra of Maleic Anhydride	26
2.4	1H NMR spectra of β- cyclodextrin polymer	26
2.5	FTIR spectra of MNPs, β -CD, MA, and SPNA	27
2.6	XRD pattern for fresh SPNA and recycled SPNA	29
2.7	HR-TEM images for (A) Pure MNPs and (B) & (C) SPNA	30
2.8	DLS profile for SPNA	31
2.9	Room temperature magnetization curves of SPNA (Inset: Photograph	31
	showing separation of SPNA using an external magnet)	
2.10.	Thermo Gravimetric Analysis curve of SPNA	32
2.11	Nitrogen adsorption-desorption isotherm of SPNA	33
2.12	Nitrogen adsorption-desorption isotherm of pristine Iron Oxide	34

Nanoparticles

	1	
2.13	Effect of SPNAs dosage on the percentage removal of 30mgL ⁻¹ of MG,	35
	20 mgL ⁻¹ of MB and R6G at 25 °C and pH-7.0	
2.14	Effect of contact time on the percentage removal of 30mgL ⁻¹ of MG, 20	36
	mgL ⁻¹ of MB and R6G at 25 °C and pH-7.0	
2.15	Effect of pH on the percentage removal of 30mgL ⁻¹ of MG, 20 mgL ⁻¹ of	37
	MB and R6G at 25 °C	
2.16	Effect of initial concentration on adsorption of dyes on SPNA	38
2.17	Effect of temperature on dye removal efficiency at 35 °C and 45 °C	39
2.18	Langmuir adsorption isotherm for the removal of 30mgL ⁻¹ of MG, 20	40
	mgL ⁻¹ of MB and R6G at 25 °C pH 7.0	
2.19	Freundlich adsorption isotherm for the removal of 30mgL ⁻¹ of MG, 20	41
	mgL ⁻¹ of MB and R6G at 25 °C pH 7.0	
2.20	(A) Zero order (B) First Order (C) Second Order (D) Third Order (E)	42
	Pseudo first order (F) Pseudo Second Order kinetic curves for MB, MG	
	and R6G	
2.21	Percentage removal of dyes after successive desorption/adsorption cycles	44
2.22	FTIR spectra of the recycled adsorbent	45
2.23	Interaction of the dyes MB, MG and R6G with SPNA	46
3.1	Schematic description of process for synthesis of dextran derived	62
	Hydrogel	
3.2	Solid state ¹³ C NMR of Hydrogel	66
3.3	FTIR spectra of Dextran and Hydrogel	67
3.4	X-ray diffractograms of Dextran and hydrogel	68
3.5	SEM images and elemental mapping via EDX in (i) dextran and (ii)	69
	hydrogel	
3.6	Thermogravimetric Curves for Hydrogel	69
3.7	Swelling characteristics of hydrogel in (A) distilled water (B) buffer	71
	solutions of pH (2-10) (C) KCl solutions (D) water retention profile	
3.8	Effect on removal efficiency of MB and MO by varying parameters (A)	73
	pH; Inset: Photographs of vial before and after adsorption, pH 12 for MB	

	and pH 2 for MO (B) adsorbent dosage (C)initial concentration (D) at	
	35°C, 45°C and 55°C temperature (E) contact time (For all the	
	experiments 100 mgL ⁻¹ dye solution was and 0.1 g of hydrogel was used)	
3.9	Adsorption isotherms for MB and MO uptake; (A &B) Langmuir and (C)	75
	Freundlich model fitting	
3.10	Thermodynamic plot for removal of (A) MB and (B) MO using hydrogel	77
3.11	Thermodynamic surface plots for (A) MB and (B) MO uptake by	78
	hydrogel	
3.12	Graphs of (A)zero order(B)first order (C) second order (D) third order (E)	80
	pseudo first order (F) pseudo second order kinetic models for adsorption	
	of MB and MO on hydrogel (conditions: initial concentration 100 mgL ⁻¹ ,	
	adsorbent dosage 0.1g at room temperature)	
3.13	Assessment of hydrogel's adsorption behaviour in a binary mixture of	81
	dyes (A) UV-vis spectra recorded before and after adsorption at different	
	time intervals digital (Inset: images depicting color changes prior to	
	mixing, after mixing of dyes and post adsorption.) (B) $\ensuremath{\sc R_e}$ for MB and	
	MO individually from mixture(Conditions: initial concentration of binary	
	solution 25 mgL ⁻¹ , adsorbent dosage 0.1g at room temperature)	
3.14	(A) Studies for desorption of dyes in different eluents (B) assessment of	83
	recyclability of the hydrogel	
3.15	Characterizations of recycled hydrogel (A) (i) X-ray diffractograms and	84
	(ii) FTIR spectra (B) EDX spectra of adsorbent samples with dyes	
	adsorbed on its surface (i) MB and (ii) MO	
3.16	Probable mechanism for adsorption of cationic and anionic Dyes onto	85
	hydrogel depicting some possible interactions	
3.17	Schematic for preparation of valorized metallopolymer Ag@Hydrogel	88
3.18	Characterizations of valorized metallopolymer (A)SEM image and EDS	89
	spectrumshowing presence of Ag (B) appearance of SPR band due to	
	formation of Ag nanoparticles observed by UV-vis spectrophotometric	
	determination (C) XPS and (D) DLS spectrum	
3.19	General scheme for the reduction of nitroaromatics and UV-vis	91

	spectrophotometric determinations for reduction of varying	
	concentrations of 4-NP using Ag@Hydrogel	
3.20	Probable mechanism for reduction of 4-NP to 4-NA over valorized catalyst Ag@Hydrogel	92
3.21	(A) FT-IR overlay of fresh and recycled metallopolymer (B) Recycling studies	93
3.22	Process flow diagram for commercial production of dextran derived Hydrogels	94
3.23	Process flow diagram for practical application of Ag@Hydrogel for nitroaromatics reduction	95
4.1	Schematic for synthesis of cyclodextrin phthalate ester (CDPA) polymer and subsequent entrapment of Au/Ag nanoparticles to form the nanosensor	112
4.2	(A) ¹ H NMR spectrum of CDPA polymer (B) overlay of FTIR spectra (i) CDPA polymer, (ii) AuNS@CDPA and (iii) AgNS@CDPA	113
4.3	UV-vis determinations demonstrating spectral properties of synthesized nanoparticles (A) AuNS@CDPA and (B) AgNS@CDPA (inset images of cuvettes containing sensor solutions)	115
4.4	Characterization via HRTEM imaging for (A)AuNS@CDPA (B) AgNS@CDPA; comparison of the hydrodynamic size of both sensors via (C) DLS measurements (D) zeta-potential graph and (E) elemental mapping of the sensors	117
4.5	(A) Photographs and (B) Absorption spectra of AuNS@CDPA in absence and presence of various amino acids and their mixture	119
4.6	(A) Photographs and (B) Absorption spectra of AgNS@CDPA in absence and presence of amino acids (Cysteine, Proline, Glycine, Aspartic Acid, Tyrosine and Mixture)	120
4.7	(A) Photographs of AuNS@CDPA solution in presence of different agrochemical compounds. The colour change is observed only in the case of sulfur-containing compounds (B-D) Comparative UV-visible spectra of AuNS@CDPA in a mixture of sulfur and non-sulfur agrochemicals	122

- 4.8 (A) Photographs and (B) Absorption spectra of AgNS@CDPA in absence 123 and presence of agrochemicals (PDO, SDO, DST, DAHO, SHC, DPA, ATC, SMB, TGA and SDDC)
- UV-visible spectra demonstrating effect of (A) NaCl concentration and
 (B) pH values in presence/absence of Cysteine. The graph of absorption
 ratio (A₆₇₀/A₅₂₄) versus NaCl concentration/pH shows the optimum
 sensing conditions
- 4.10 UV-visible spectra demonstrating effect of (A) NaCl concentration and 126 (B) pH values in presence/absence of SDDC. The graph of absorption ratio (A₆₇₀/A₅₂₄) versus NaCl concentration/pH shows the optimum sensing conditions
- 4.11 (A) UV-vis spectra and (B) Absorption ratio (A₆₇₀/A₅₂₄) of 127 AuNS@CDPA in presence of allicin containing onion and garlic extract. (C)Photographs of AuNS@CDPA and AgNS@CDPA in presence of sulfur based pesticide samples and their (D&E) Absorption spectra. Linear relationship of (F) Cysteine and (G) SDDC with absorbance at 670 nm for quantification and determination of LOD (Sensing samples were prepared by adding 700 µL of AuNS@CDPA solution with 300 µL of different concentration of Cysteine and SDDC, the error bars represent standard deviation obtained from three independent measurements)
- 4.12 Schematic showing a probable mechanism for detection of (A) Cysteine 132 and (B) SDDC using AuNS@CDPA
- 4.13 FTIR overlay spectra for AuNS@CDPA in presence of (i) Cysteine and 133 (ii) SDDC
- 4.14 Various analytical characterization of sensor in presence of analytes; 134 HRTEM image of (A) Cysteine added AuNS@CDPA (B) SDDC added AuNS@CDPA (C) Cysteine containing AgNS@CDPA and (D) SDDC containing AgNS@CDPA; (E) & (F) DLS spectra of Cysteine and SDDC containing sensor solutions; elemental mapping of (G) Cysteine and (H) SDDC added AuNS@CDPA
- **5.1.1** Preparation of bioadsorbent FVSB

147

The Maharaja Sayajirao University of Baroda

xii

5.1.2	FTIR spectra of FVSB, FVSB+MB and FVSB+RB	150
5.1.3	(I) SEM images of (A) FVSB, (B) FVSB+MB and (C) FVSB+RB; (II)	151
	EDS curves of (A) FVSB, (B) FVSB+MB and (C) FVSB+RB	
5.1.4	Thermogravimetric curves for FVSB	152
5.1.5	Effect of FVSB dosage on the percentage removal of 100mg/L of MB	153
	and RB at room temperature	
5.1.6	Effect of initial concentration of MB and RB on adsorption capacity and	154
	removal efficiency using FVSB at room temperature	
5.1.7	Effect of pH on removal efficiency of MB and RB on FVSB at room	155
	temperature	
5.1.8	Effect of contact time on the percentage removal of 100mgL ⁻¹ of MB	156
	and RB at pH-8.0 and pH- 4.0, respectively at room temperature	
5.1.9	Effect of temperature on removal efficiency of MB and RB with	157
	increasing temperature from 25 °C to 45 °C	
5.1.10	(A&B) Langmuir and (C) Freundlich adsorption isotherm for the removal	159
	of 100mgL ⁻¹ of MB and RB at room temperature	
5.1.11	Graphs of (A) Zero order (B) First Order (C) Second Order (D) Third	160
	Order (E) Pseudo first order (F) Pseudo Second Order kinetic curve for	
	MB and RB adsorption on FVSB	
5.1.12	ln (Q_e/C_e) versus 1/T graph for estimation of thermodynamic parameters	162
	for adsorption of MB and RB on FVSB	
5.1.13	(A) Photographic images of binary solution before and after adsorption	163
	(B) UV-vis spectra of MB and RB in binary solution with time	
5.1.14	(A) Percentage removal of MB and RB after successive	165
	desorption/adsorption cycles using 0.1M HCl as eluent; (B) FTIR spectra	
	of regenerated FVSB	4.1.1
5.1.15	Probable mechanism of adsorption of MB and RB on FVSB	166
5.1.16	Photographic images and UV visible spectra of environmental sample	167
	adsorption using FVSB	101
5.2.1	Synthetic scheme of MCL	181
5.2.2	FTIR spectra for MCL, MCL+MB and MCL+Pb ^{$2+$}	185

5.2.3	(I) SEM images of (A) MCL, (B)MCL+MB and (C) MCL+Pb ²⁺ ; (II) EDS curves of (A) MCL, (B) MCL+MB and (C) MCL+Pb ²⁺	187
5.2.4	Nitrogen adsorption-desorption isotherm of MCL bioadsorbent	188
5.2.5	Thermogravimetric curves for MCL bioadsorbent	189
5.2.6	DLS size distribution diagram of MCL bioadsorbent	189
5.2.7	XRD spectra of MCL, MCL+Pb ²⁺ and MCL+MB	190
5.2.8	Effect of MCL dosage on the percentage removal of 100mg/L of MB	191
	and Pb ²⁺ at 35°C	
5.2.9	Effect of initial concentration of MB and Pb ²⁺ on adsorption capacity	192
	and removal efficiency using MCL at 35°C	
5.2.10	(A) point zero charge (pH pzc) estimation, (B) Effect of pH on removal	193
	efficiency of MB and Pb ²⁺ on MCL at 35°C	
5.2.11	Effect of contact time on the percentage removal of 100mgL ⁻¹ of MB	195
	and Pb ²⁺ at pH-6.0 and pH- 8.0, respectively at 35°C	
5.2.12	Effect of temperature on dye removal efficiency with increasing	196
	temperature from 35 °C to 55 °C	
5.2.13	(A&B) Langmuir and (C) Freundlich adsorption isotherm for the	198
	removal of 100mgL ⁻¹ of MB and Pb ²⁺ at 35°C	
5.2.14	Graphs of (A) Zero order (B) First Order (C) Second Order (D) Third	199
	Order (E) Pseudo first order (F) Pseudo Second Order kinetic curves for	
	MB and Pb ²⁺ adsorption on MCL	
5.2.15	(A) $\ln (Q_e/C_e)$ versus 1/T graph for estimation of thermodynamic	202
	parameters for adsorption of MB and Pb ²⁺ , (B&C) Thermodynamic	
	surface plots of MB and Pb ²⁺ , respectively	•••
5.2.16	(A) UV-vis spectra of MB in binary solution with time and (B) Removal	203
	Efficiency of MB and Pb^{2+} with time in binary solution	
5.2.17	(A) Desorption study of MB and Pb^{2+} with different eluents; (B)	205
	Percentage removal of MB and Pb ²⁺ after successive	
	desorption/adsorption cycles using HCl as eluent; (C) FTIR spectra of	
	regenerated MCL after adsorption of MB and Pb^{2+}	

5.2.18	Probable mechanism of adsorption of MB and Pb ²⁺	206
5.2.19	UV visible spectra of environmental sample adsorption using MCL	207
	bioadsorbent	

List of Tables

Table	Title	Page Number
No.		
2.1	BET Parameters of SPNA	33
2.2	Isotherm constants for the adsorption of 30mgL ⁻¹ of MG, 20 mgL ⁻¹	41
	of MB and R6G at 25 °C pH 7.0	
2.3	Elemental composition of adsorbent determined before and after	47
	adsorption following 4 adsorption/desorption cycles	
2.4	Comparison of maximum adsorption capacities of SPNA with other	47
	adsorbents	
3.1	Isotherm Constants for the Adsorption of 100mgL ⁻¹ of Methylene	75
	Blue and 100 mgL ⁻¹ of Methyl Orange	
3.2	Thermodynamic Parameters for adsorption of dyes onto the surface	79
	of hydrogel at three different temperatures	
3.3	Elemental Composition of Recycled Hydrogel following	86
	Adsorption/Desorption Cycle	
3.4	Comparison of Removal Efficiencies of Hydrogel with Literature	86
	Reports	
3.5	Elemental Composition of Ag@Hydrogel	90
3.6	Reduction of 4-NP at Different Concentrations using Ag@Hydrogel	92
	as Catalyst	
4.1	Optimization for preparation of AuNS@CDPA	114
4.2	Optimization for preparation of AgNS@CDPA	115
4.3	A comparison table of various Au/Ag derived nanosensors employed	129
	for colourimetric detection of cysteine/pesticides	

5.1.1	Elemental composition of FVSB before and after adsorption of MB	152
	and RB	
5.1.2	Adsorption isotherm constants for 100 mgL ⁻¹ of MB and RB at room	158
	temperature	
5.1.3	Kinetic parameters for adsorption of MB and RB on FVSB	161
5.1.4	Thermodynamic parameters for the adsorption of MB and RB on	163
	FVSB	
5.1.5	Comparison of maximum adsorption capacities of FVSB with other	168
	adsorbents	
5.2.1	Elemental composition of MCL bioadsorbent before and after	186
	adsorption of MB and Pb ²⁺	
5.2.2	Isotherm constants for the adsorption of 100mgL ⁻¹ of MB and Pb ²⁺	197
	at 35 °C	
5.2.3	Kinetics parameters for adsorption of MB and Pb ²⁺ on MCL	200
5.2.4	Thermodynamic parameters for the adsorption of MB and Pb^{2+} on	201
	MCL	
5.2.5	Comparison of maximum adsorption capacities of MCL with other	206
	adsorbents	